Citation: | MA Jing, JIA Tianfeng, MAO Haifei, YANG Jihong. Mechanism of "treating different diseases with the same method" for chronic obstructive pulmonary disease and diabetes with Shenling Baizhu San based on network pharmacology and molecular docking[J]. Journal of Clinical Medicine in Practice, 2025, 29(3): 38-45. DOI: 10.7619/jcmp.20244292 |
To explore the mechanisms of "treating different diseases with the same method" for chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) with Shenling Baizhu San based on network pharmacology and molecular docking.
Comprehensive databases were searched to collect the active ingredients and targets of Shenling Baizhu San, which were then performed standardized process. Relevant targets for COPD and DM were collected from data platforms such as GeneCards and Online Mendelian Inheritance in Man (OMIM). The intersection targets of the drug and diseases were identified using Venn software, imported into the STRING database to construct a protein-protein interaction (PPI) network, and performed visualized analysis using Cytoscape software. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Molecular docking and visualization analysis were conducted using the CB-Dock2 platform.
After screening, 215 potential targets of Shenling Baizhu San were obtained. Venn diagram analysis showed that there were 70 potential intersection targets for the treatment of COPD and DM with Shenling Baizhu San. Key active ingredients included quercetin, stigmasterol, kaempferol, sitosterol, and luteolin, while core targets included tumor necrosis factor(TNF), interleukin-6(IL-6), interleukin-β(IL-1β), prostaglandin-endoperoxide synthase 2(PTGS2), and tumor protein p53 (TP53). GO functional enrichment analysis yielded 2, 599 biological process terms, 49 cellular component terms, and 230 molecular function terms. The main pathways obtained from KEGG pathway enrichment analysis included lipid and atherosclerosis, interleukin-17 (IL-17) signaling pathway, TNF signaling pathway, and human cytomegalovirus infection. Molecular docking results showed that stigmasterol had the best docking activity with PTGS2.
Shenling Baizhu San may achieve the "treatment of different diseases with the same method" for COPD and DM through multiple components, multiple targets, and multiple pathways, and there is a certain correlation in the treatment mechanisms of two diseases, providing a theoretical basis and direction for subsequent research.
[1] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)[J]. 中华全科医师杂志, 2024, 23(6): 578-602. doi: 10.3760/cma.j.cn114798-20240326-00174
|
[2] |
贾蓓, 何家琛, 李佳玮, 等. 中药治疗慢性阻塞性肺疾病机制的研究进展[J]. 天津中医药, 2023, 40(9): 1208-1217.
|
[3] |
中华医学会糖尿病学分会, 国家基层糖尿病防治管理办公室. 国家基层糖尿病防治管理指南(2022)[J]. 中华内科杂志, 2022, 61(3): 249-262.
|
[4] |
卢广英, 邢训颜, 王嘉昀, 等. 经典名方参苓白术散的研究进展及质量标志物的预测分析[J]. 中国中药杂志, 2022, 47(19): 5171-5181.
|
[5] |
夏慧敏, 陈志祥, 张华. 张华运用参苓白术散加减治疗慢性阻塞性肺疾病稳定期经验介绍[J]. 中国医药科学, 2021, 11(23): 108-111.
|
[6] |
张杰, 董翠婷, 刘园园, 等. 参苓白术散联合桂枝茯苓丸、达格列净治疗2型糖尿病肾病IV期的蛋白尿的随机对照研究[J]. 临床医学进展, 2024, 14(1): 1829-1835.
|
[7] |
LI J, FU A L, ZHANG L. An overview of scoring functions used for protein-ligand interactions in molecular docking[J]. Interdiscip Sci Comput Life Sci, 2019, 11(2): 320-328. doi: 10.1007/s12539-019-00327-w
|
[8] |
李雪, 李阳轲. 慢性阻塞性肺病中医研究进展[J]. 临床医学进展, 2024, 14(8): 1290-1298.
|
[9] |
杨帆, 彭玉林, 王平. 基于"五脏" 探讨糖尿病并发症及病因病机[J]. 中医学, 2023, 12(5): 996-1000.
|
[10] |
HSU I L, LU C L, LI C C, et al. Population-based cohort study suggesting a significantly increased risk of developing chronic obstructive pulmonary disease in people with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2018, 138: 66-74.
|
[11] |
刘丽君, 陈燕. 慢性阻塞性肺疾病合并2型糖尿病肺功能改变的研究进展[J]. 国际呼吸杂志, 2019, 39(12): 947-951.
|
[12] |
许玲芬, 李英兰, 王佳斌, 等. 基于TLR4-NF-κB通路的槲皮素对病毒性呼吸道感染小鼠免疫功能的影响及抑炎作用研究[J]. 中药药理与临床, 2023, 39(6): 53-57.
|
[13] |
ZHUANG M, RAO L, CHEN Y, et al. Controlled SPION-exosomes loaded with quercetin preserves pancreatic beta cell survival and function in type 2 diabetes mellitus[J]. Int J Nanomedicine, 2023, 18: 5733-5748. http://openurl.ebsco.com/contentitem/doi:10.2147%2FIJN.S422416?sid=ebsco:plink:crawler&id=ebsco:doi:10.2147%2FIJN.S422416
|
[14] |
ALRUMAIHI F, ALMATROODI S A, ALHARBI H O A, et al. Pharmacological potential of kaempferol, a flavonoid in the management of pathogenesis via modulation of inflammation and other biological activities[J]. Molecules, 2024, 29(9): 2007. http://www.mdpi.com/1420-3049/29/9/2007#metrics
|
[15] |
张茁, 孙文, 刘铜华, 等. 山柰酚对2型糖尿病小鼠骨骼肌PI3K-AKT-GLUT4信号通路的影响[J]. 世界科学技术-中医药现代化, 2016, 18(7): 1139-1143.
|
[16] |
余漂, 王祥培, 徐锋, 等. 基于网络药理学探讨吉贝咳喘胶囊止咳、平喘、祛痰的作用机制[J]. 生物医学, 2022, 12(1): 18-26.
|
[17] |
杨姗. 豆甾醇对2型糖尿病模型db/db小鼠糖脂代谢的作用及机制研究[D]. 遵义: 遵义医科大学, 2023.
|
[18] |
GENG A, CHEN S, REN L, et al. Luteolin inhibited the self-renewal and altered the polarization of primary alveolar macrophages[J]. Contrast Media Mol Imaging, 2022, 2022: 3517020.
|
[19] |
GE X D, HE X Y, LIN Z S, et al. 6, 8-(1, 3-Diaminoguanidine) luteolin and its Cr complex show hypoglycemic activities and alter intestinal microbiota composition in type 2 diabetes mice[J]. Food Funct, 2022, 13(6): 3572-3589.
|
[20] |
李海蓉, 周正礼, 匡如. 健脾补肺汤治疗慢性阻塞性肺疾病脾肺两虚证稳定期的临床效果[J]. 中华养生保健, 2024, 42(20): 27-30.
|
[21] |
付子坚, 李建生, 田燕歌, 等. 基于网络药理学方法、分子对接技术及动物实验验证探讨通塞颗粒治疗慢性阻塞性肺疾病急性加重期的作用机制[J]. 新中医, 2024, 56(6): 170-185.
|
[22] |
DAS A K, KALRA S, PUNYANI H, et al. 'Oxidative stress'-a new target in the management of diabetes mellitus[J]. J Family Med Prim Care, 2023, 12(11): 2552-2557. http://openurl.ebsco.com/contentitem/doi:10.4103%2Fjfmpc.jfmpc_2249_21?sid=ebsco:plink:crawler&id=ebsco:doi:10.4103%2Fjfmpc.jfmpc_2249_21
|
[23] |
杨宁, 王艺晨, 丁选胜. 基于Wnt/β-catenin信号通路干预糖尿病足创面愈合的中药研究进展[J]. 药学进展, 2024, 48(2): 143-150.
|
[24] |
王馨禾, 张凌睿, 徐云生. 温肾降糖汤治疗早期糖尿病肾病脾肾阳虚证的临床效果[J]. 中国临床医生杂志, 2024, 52(11): 1323-1325.
|
[25] |
顾恪波, 张丽娜, 吴洁, 等. "化痰" 法治疗恶性肿瘤的研究进展[J]. 中华中医药杂志, 2017, 32(12): 5468-5471.
|
[26] |
任梦涵, 杨丽霞, 梁永林, 等. 基于网络药理学和分子对接技术研究黄芩-黄连药对防治2型糖尿病作用机制[J]. 甘肃中医药大学学报, 2024, 41(3): 40-50.
|
[27] |
NELIN L D, JIN Y, CHEN B, et al. Cyclooxygenase-2 deficiency attenuates lipopolysaccharide-induced inflammation, apoptosis, and acute lung injury in adult mice[J]. Am J Physiol Regul Integr Comp Physiol, 2022, 322(2): R126-R135. http://pubmed.ncbi.nlm.nih.gov/34984926/
|
[28] |
CARPENTER J, WANG Y, GUPTA R, et al. Assembly and organization of the N-terminal region of mucin MUC5AC: indications for structural and functional distinction from MUC5B[J]. Proc Natl Acad Sci USA, 2021, 118(39): e2104490118.
|
[29] |
FÈVE B, BASTARD J P. The role of interleukins in insulin resistance and type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2009, 5: 305-311. http://www.xueshufan.com/publication/1978393167
|
[30] |
喻姝, 陈绍平. IL-17与COPD发病机制的研究进展[J]. 西南军医, 2021, 23(2): 134-136, 142.
|
[31] |
张笑蕊. 基于网络药理学探讨益糖康治疗T2DM机制及关于IL-17信号通路实验验证[D]. 沈阳: 辽宁中医药大学, 2022.
|
[32] |
周盈, 曹磊, 平芬. 慢性阻塞性肺疾病相关炎性细胞因子的研究进展[J]. 临床荟萃, 2020, 35(3): 273-276.
|