Citation: | JIANG Xinlin, ZHU Mingyue, FAN Lei, ZHU Wenxin, XIU Yuwei, LIU Yuanbiao. Research progress of non-invasive brain stimulation in treatment of patients with post-stroke cognitive impairment[J]. Journal of Clinical Medicine in Practice, 2024, 28(13): 144-148. DOI: 10.7619/jcmp.20242009 |
Post-stroke cognitive impairment (PSCI) is a common complication after stroke, which has high disability rate and mortality rate, and can affect the patient′s daily living ability and quality of life. Non-invasive brain stimulation (NIBS) has the advantages of non-invasiveness, safety, and ease of operation, and is easily accepted by patients. NIBS has a good application prospect in the treatment of PSCI, especially the representative treatment repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) such as have good clinical application effects. At present, there is no standardized treatment plan for NIBS, and there are large individual differences in therapeutic effects. This study reviewed the mechanism and clinical application of NIBS in the treatment of PSCI, and discussed the future application direction of NIBS.
[1] |
GBD Australia Collaborators. The burden and trend of diseases and their risk factors in Australia, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2023, 8(8): e585-e599. doi: 10.1016/S2468-2667(23)00123-8
|
[2] |
汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021[J]. 中国卒中杂志, 2021, 16(4): 376-389. doi: 10.3969/j.issn.1673-5765.2021.04.011
|
[3] |
ROHDE D, GAYNOR E, LARGE M, et al. The impact of cognitive impairment on poststroke outcomes: a 5-year follow-up[J]. J Geriatr Psychiatry Neurol, 2019, 32(5): 275-281. doi: 10.1177/0891988719853044
|
[4] |
ROST N S, MESCHIA J F, GOTTESMAN R, et al. Cognitive impairment and dementia after stroke: design and rationale for the DISCOVERY study[J]. Stroke, 2021, 52(8): e499-e516.
|
[5] |
ZHAO Q, WANG X, WANG T, et al. Cognitive rehabilitation interventions after stroke: protocol for a systematic review and meta-analysis of randomized controlled trials[J]. Syst Rev, 2021, 10(1): 66. doi: 10.1186/s13643-021-01607-7
|
[6] |
LI Y M, LUO H, YU Q, et al. Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study[J]. Front Neurol, 2020, 11: 977. doi: 10.3389/fneur.2020.00977
|
[7] |
尚莹春, 张涛. 重复经颅磁刺激对认知功能的作用及其分子机理的研究进展[J]. 电工技术学报, 2021, 36(4): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202104003.htm
|
[8] |
KUMAR M, KUMAR A, SINDHU R K, et al. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats[J]. Neurochem Int, 2021, 151: 105217. doi: 10.1016/j.neuint.2021.105217
|
[9] |
WANG X F, XIAO H H, WU Y T, et al. Active constituent of Polygala tenuifolia attenuates cognitive deficits by rescuing hippocampal neurogenesis in APP/PS1 transgenic mice[J]. BMC Complement Med Ther, 2021, 21(1): 267. doi: 10.1186/s12906-021-03437-5
|
[10] |
CHA B, KIM J, KIM J M, et al. Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study[J]. Front Neurol, 2022, 13: 813597. doi: 10.3389/fneur.2022.813597
|
[11] |
WU X Q, WANG L, GENG Z, et al. Improved cognitive promotion through accelerated magnetic stimulation[J]. eNeuro, 2021, 8(1): ENEURO. 0392-ENEURO. 0320. 2020.
|
[12] |
WEBLER R D, FOX J, MCTEAGUE L M, et al. DLPFC stimulation alters working memory related activations and performance: an interleaved TMS-fMRI study[J]. Brain Stimul, 2022, 15(3): 823-832. doi: 10.1016/j.brs.2022.05.014
|
[13] |
MOTES M A, YEZHUVATH U S, ASLAN S, et al. Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial[J]. Neurobiol Aging, 2018, 62: 72-81. doi: 10.1016/j.neurobiolaging.2017.10.003
|
[14] |
ACEVES-SERRANO L, NEVA J L, DOUDET D J. Insight into the effects of clinical repetitive transcranial magnetic stimulation on the brain from positron emission tomography and magnetic resonance imaging studies: a narrative review[J]. Front Neurosci, 2022, 16: 787403. doi: 10.3389/fnins.2022.787403
|
[15] |
SHAO D, ZHAO Z N, ZHANG Y Q, et al. Efficacy of repetitive transcranial magnetic stimulation for post-stroke depression: a systematic review and meta-analysis of randomized clinical trials[J]. Rev Bras De Pesquisas Med E Biol, 2021, 54(3): e10010.
|
[16] |
WHYBIRD M, COATS R, VUISTER T, et al. The role of the posterior parietal cortex on cognition: an exploratory study[J]. Brain Res, 2021, 1764: 147452. doi: 10.1016/j.brainres.2021.147452
|
[17] |
YANG N Y, FONG K N, LI-TSANG C W, et al. Effects of repetitive transcranial magnetic stimulation combined with sensory cueing on unilateral neglect in subacute patients with right hemispheric stroke: a randomized controlled study[J]. Clin Rehabil, 2017, 31(9): 1154-1163. doi: 10.1177/0269215516679712
|
[18] |
LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. doi: 10.1016/j.clinph.2019.11.002
|
[19] |
ZUMBANSEN A, KNEIFEL H, LAZZOUNI L, et al. Differential effects of speech and language therapy and rTMS in chronic versus subacute post-stroke aphasia: results of the NORTHSTAR-CA trial[J]. Neurorehabil Neural Repair, 2022, 36(4/5): 306-316.
|
[20] |
ZHANG C L, ZHENG X Q, LU R L, et al. Repetitive transcranial magnetic stimulation in combination with neuromuscular electrical stimulation for treatment of post-stroke dysphagia[J]. J Int Med Res, 2019, 47(2): 662-672. doi: 10.1177/0300060518807340
|
[21] |
周婷, 巩尊科, 王世雁, 等. 重复经颅磁刺激对脑卒中后执行功能障碍的影响[J]. 实用医学杂志, 2017, 33(7): 1036-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYZ201707006.htm
|
[22] |
XU M J, LI Y, ZHANG C, et al. Efficacy of scalp stimulation for multidomain cognitive impairment in patients with post-stroke cognitive impairment and dementia: a network meta-analysis and meta-regression of moderators[J]. J Evid Based Med, 2023, 16(4): 505-519. doi: 10.1111/jebm.12568
|
[23] |
SALEH O, ASSAF M, ALZOUBI A, et al. The effects of transcranial direct current stimulation on cognitive function for mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials[J]. Aging Clin Exp Res, 2023, 35(11): 2293-2306. doi: 10.1007/s40520-023-02528-2
|
[24] |
PENG Z W, ZHOU C H, XUE S S, et al. Mechanism of repetitive transcranial magnetic stimulation for depression[J]. Shanghai Arch Psychiatry, 2018, 30(2): 84-92.
|
[25] |
GOFF D C. D-cycloserine in schizophrenia: new strategies for improving clinical outcomes by enhancing plasticity[J]. Curr Neuropharmacol, 2017, 15(1): 21-34. doi: 10.2174/1570159X14666160225154812
|
[26] |
AHN S M, JUNG D H, LEE H J, et al. Contralesional application of transcranial direct current stimulation on functional improvement in ischemic stroke mice[J]. Stroke, 2020, 51(7): 2208-2218. doi: 10.1161/STROKEAHA.120.029221
|
[27] |
LI L M, UEHARA K, HANAKAWA T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies[J]. Front Cell Neurosci, 2015, 9: 181.
|
[28] |
WOODS A J, ANTAL A, BIKSON M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clin Neurophysiol, 2016, 127(2): 1031-1048. doi: 10.1016/j.clinph.2015.11.012
|
[29] |
FURUBAYASHI T, TERAO Y, ARAI N, et al. Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area[J]. Exp Brain Res, 2008, 185(2): 279-286. doi: 10.1007/s00221-007-1149-z
|
[30] |
HSU G, FARAHANI F, PARRA L C. Cutaneous sensation of electrical stimulation waveforms[J]. Brain Stimul, 2021, 14(3): 693-702. doi: 10.1016/j.brs.2021.04.008
|
[31] |
VAN LIESHOUT E C C, VAN HOOIJDONK R F, DIJKHUIZEN R M, et al. The effect of noninvasive brain stimulation on poststroke cognitive function: a systematic review[J]. Neurorehabil Neural Repair, 2019, 33(5): 355-374. doi: 10.1177/1545968319834900
|
[32] |
ELSNER B, KUGLER J, POHL M, et al. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke[J]. Cochrane Database Syst Rev, 2020, 11(11): CD009645.
|
[33] |
KOLSKÅR K K, RICHARD G, ALNAES D, et al. Reliability, sensitivity, and predictive value of fMRI during multiple object tracking as a marker of cognitive training gain in combination with tDCS in stroke survivors[J]. Hum Brain Mapp, 2021, 42(4): 1167-1181. doi: 10.1002/hbm.25284
|
[34] |
TURGUT N, MIRANDA M, KASTRUP A, et al. tDCS combined with optokinetic drift reduces egocentric neglect in severely impaired post-acute patients[J]. Neuropsychol Rehabil, 2018, 28(4): 515-526. doi: 10.1080/09602011.2016.1202120
|
[35] |
ZHAO Q, WANG J, LI Z, et al. Effect of anodic transcranial direct current stimulation combined with speech language therapy on nonfluent poststroke aphasia[J]. Neuromodulation, 2021, 24(5): 923-929. doi: 10.1111/ner.13337
|
[36] |
DARKOW R, MARTIN A, WVRTZ A, et al. Transcranial direct current stimulation effects on neural processing in post-stroke aphasia[J]. Hum Brain Mapp, 2017, 38(3): 1518-1531. doi: 10.1002/hbm.23469
|
[37] |
SPIELMANN K, VAN DE SANDT-KOENDERMAN W M E, HEIJENBROK-KAL M H, et al. Transcranial direct current stimulation does not improve language outcome in subacute poststroke aphasia[J]. Stroke, 2018, 49(4): 1018-1020. doi: 10.1161/STROKEAHA.117.020197
|
[38] |
ELYAMANY O, LEICHT G, HERRMANN C S, et al. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(1): 135-156. doi: 10.1007/s00406-020-01209-9
|
[39] |
HOHN V D, MAY E S, PLONER M. From correlation towards causality: modulating brain rhythms of pain using transcranial alternating current stimulation[J]. Pain Rep, 2019, 4(4): e723. doi: 10.1097/PR9.0000000000000723
|
[40] |
WISCHNEWSKI M, JOERGENSEN M L, COMPEN B, et al. Frontal beta transcranial alternating current stimulation improves reversal learning[J]. Cereb Cortex, 2020, 30(5): 3286-3295. doi: 10.1093/cercor/bhz309
|
[41] |
SARICA C, NANKOO J F, FOMENKO A, et al. Human Studies of Transcranial Ultrasound neuromodulation: a systematic review of effectiveness and safety[J]. Brain Stimul, 2022, 15(3): 737-746. doi: 10.1016/j.brs.2022.05.002
|
[42] |
PARK M, HOANG G M, NGUYEN T, et al. Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice[J]. Transl Neurodegener, 2021, 10(1): 48. doi: 10.1186/s40035-021-00274-x
|
[43] |
BAIG S S, KAMAROVA M, ALI, et al. Transcutaneous vagus nerve stimulation (tVNS) in stroke: the evidence, challenges and future directions[J]. Auton Neurosci, 2022, 237: 102909. doi: 10.1016/j.autneu.2021.102909
|
[44] |
VAN LIESHOUT E C C, VAN DER WORP H B, VISSER-MEILY J M A, et al. Timing of repetitive transcranial magnetic stimulation onset for upper limb function after stroke: a systematic review and meta-analysis[J]. Front Neurol, 2019, 10: 1269. doi: 10.3389/fneur.2019.01269
|
[45] |
GUIDALI G, RONCORONI C, BOLOGNINI N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity[J]. Behav Brain Res, 2021, 414: 113484. doi: 10.1016/j.bbr.2021.113484
|
[46] |
KUO I J, TANG C W, TSAI Y A, et al. Neurophysiological signatures of hand motor response to dual-transcranial direct current stimulation in subacute stroke: a TMS and MEG study[J]. J Neuroeng Rehabil, 2020, 17(1): 72. doi: 10.1186/s12984-020-00706-1
|