Citation: | WU Xuanlu, DING Xin, ZHENG Yanhua, WANG Xiaoxue. Effect of Coronavirus Disease 2019 infection on B-cell non-Hodgkin lymphoma[J]. Journal of Clinical Medicine in Practice, 2024, 28(22): 137-142. DOI: 10.7619/jcmp.20241910 |
Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with B-cell lymphoma may experience immunodeficiency due to the disease itself and its treatment, making them a high-risk group for susceptibility and severe outcomes of COVID-19. Therefore, it is crucial to analyze the baseline characteristics of B-cell non-Hodgkin lymphoma patients diagnosed with COVID-19, investigate common risk factors, evaluate the efficacy of vaccination and assess the immune deficiencies induced by immunotherapy, particularly CD20 monoclonal antibodies. For B-cell NHL patients with COVID-19, an individualized assessment of risk factors is necessary. This review discussed the immune response of lymphoma patients to COVID-19, summarized the characteristics of lymphoma patients following COVID-19, analyzed the vaccine effectiveness in this population, and explored the impact of COVID-19 on the onset and anti-tumor treatment of B-cell non-Hodgkin lymphoma, along with associated risk factors, aiming to provide recommendations for formulating treatment strategies and clinical management.
[1] |
ZHU N, ZHANG D Y, WANG W L, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733. doi: 10.1056/NEJMoa2001017
|
[2] |
LIU W P, LIU J M, SONG Y Q, et al. Burden of lymphoma in China, 1990-2019: an analysis of the global burden of diseases, injuries, and risk factors study 2019[J]. Aging, 2022, 14(7): 3175-3190. doi: 10.18632/aging.204006
|
[3] |
PARDOLL D M. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. doi: 10.1038/nrc3239
|
[4] |
PASSAMONTI F, CATTANEO C, ARCAINI L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study[J]. Lancet Haematol, 2020, 7(10): e737-e745. doi: 10.1016/S2352-3026(20)30251-9
|
[5] |
AVERBUCH D, ORASCH C, CORDONNIER C, et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 20114th European Conference on Infections in Leukemia[J]. Haematologica, 2013, 98(12): 1826-1835. doi: 10.3324/haematol.2013.091025
|
[6] |
MASCHMEYER G, GREEF J D, MELLINGHOFF S C, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL)[J]. Leukemia, 2019, 33(4): 844-862. doi: 10.1038/s41375-019-0388-x
|
[7] |
WILLIAMSON E J, WALKER A J, BHASKARAN K, et al. Factors associated with COVID-19-related death using OpenSAFELY[J]. Nature, 2020, 584(7821): 430-436. doi: 10.1038/s41586-020-2521-4
|
[8] |
SHREE T, LI Q, GLASER S L, et al. Impaired immune health in survivors of diffuse large B-cell lymphoma[J]. J Clin Oncol, 2020, 38(15): 1664-1675. doi: 10.1200/JCO.19.01937
|
[9] |
YANG K Y, SHENG Y H, HUANG C L, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study[J]. Lancet Oncol, 2020, 21(7): 904-913. doi: 10.1016/S1470-2045(20)30310-7
|
[10] |
REGALADO-ARTAMENDI I, JIMÉNEZ-UBIETO A, HERNÁNDEZ-RIVAS J Á, et al. Risk factors and mortality of COVID-19 in patients with lymphoma: a multicenter study[J]. HemaSphere, 2021, 5(3): e538. doi: 10.1097/HS9.0000000000000538
|
[11] |
DULÉRY R, LAMURE S, DELORD M, et al. Prolonged in-hospital stay and higher mortality after Covid-19 among patients with non-Hodgkin lymphoma treated with B-cell depleting immunotherapy[J]. Am J Hematol, 2021, 96(8): 934-944. doi: 10.1002/ajh.26209
|
[12] |
VISCO C, MARCHESELLI L, MINA R, et al. A prognostic model for patients with lymphoma and COVID-19: a multicentre cohort study[J]. Blood Adv, 2022, 6(1): 327-338. doi: 10.1182/bloodadvances.2021005691
|
[13] |
TILCH M K, VISCO C, KINDA S, et al. Outcome of COVID-19 in patients with mantle cell lymphoma-report from the European MCL registry[J]. Hemasphere, 2022, 6(5): e0711. doi: 10.1097/HS9.0000000000000711
|
[14] |
PAGANO L, SALMANTON-GARCÍA J, MARCHESI F, et al. COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)[J]. J Hematol Oncol, 2021, 14(1): 168. doi: 10.1186/s13045-021-01177-0
|
[15] |
GAITZSCH E, PASSERINI V, KHATAMZAS E, et al. COVID-19 in patients receiving CD20-depleting immunochemotherapy for B-cell lymphoma[J]. HemaSphere, 2021, 5(7): e603. doi: 10.1097/HS9.0000000000000603
|
[16] |
GADANI S P, REYES-MANTILLA M, JANK L, et al. Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy[J]. EBioMedicine, 2021, 73: 103636. doi: 10.1016/j.ebiom.2021.103636
|
[17] |
GAGELMANN N, PASSAMONTI F, WOLSCHKE C, et al. Antibody response after vaccination against SARS-CoV-2 in adults with hematological malignancies: a systematic review and meta-analysis[J]. Haematologica, 2022, 107(8): 1840-1849.
|
[18] |
JURGENS E M, KETAS T J, ZHAO Z, et al. Serologic response to mRNA COVID-19 vaccination in lymphoma patients[J]. Am J Hematol, 2021, 96(11): E410-E413.
|
[19] |
DEWOLF S, LARACY J C, PERALES M A, et al. SARS-CoV-2 in immunocompromised individuals[J]. Immunity, 2022, 55(10): 1779-1798. doi: 10.1016/j.immuni.2022.09.006
|
[20] |
WALTI C S, LOES A N, SHUEY K, et al. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy: a prospective observational study[J]. J Immunother Cancer, 2021, 9(10): e003428. doi: 10.1136/jitc-2021-003428
|
[21] |
PIECHOTTA V, MELLINGHOFF S C, HIRSCH C, et al. Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: a systematic review[J]. Blood Cancer J, 2022, 12(5): 86. doi: 10.1038/s41408-022-00684-8
|
[22] |
LIM S H, CAMPBELL N, JOHNSON M, et al. Antibody responses after SARS-CoV-2 vaccination in patients with lymphoma[J]. Lancet Haematol, 2021, 8(8): e542-e544. doi: 10.1016/S2352-3026(21)00199-X
|
[23] |
CAVANNA L, GRASSI S O, RUFFINI L, et al. Non-hodgkin lymphoma developed shortly after mRNA COVID-19 vaccination: report of a case and review of the literature[J]. Medicina, 2023, 59(1): 157. doi: 10.3390/medicina59010157
|
[24] |
ZAMFIR M A, MORARU L, DOBREA C, et al. Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: a report of two cases[J]. Medicina, 2022, 58(7): 874. doi: 10.3390/medicina58070874
|
[25] |
MIZUTANI M, MITSUI H, AMANO T, et al. Two cases of axillary lymphadenopathy diagnosed as diffuse large B-cell lymphoma developed shortly after BNT162b2 COVID-19 vaccination[J]. J Eur Acad Dermatol Venereol, 2022, 36(8): e613-e615.
|
[26] |
LONG Q X, LIU B Z, DENG H J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19[J]. Nat Med, 2020, 26(6): 845-848. doi: 10.1038/s41591-020-0897-1
|
[27] |
MARCACCI G, FIORENTINO G, VOLZONE F, et al. Atypical COVID-19 dynamics in a patient with mantle cell lymphoma exposed to rituximab[J]. Infect Agent Cancer, 2021, 16(1): 38. doi: 10.1186/s13027-021-00376-1
|
[28] |
SARA M, MINELLI C, BROCCIA G, et al. COVID-19 and non-Hodgkin's lymphoma: a common susceptibility pattern?[J]. PLoS One, 2023, 18(3): e0277588. doi: 10.1371/journal.pone.0277588
|
[29] |
CHEN Q N, LU C Y, JIANG F, et al. The association of COVID-19 with diffuse large B-cell lymphoma: a Mendelian randomization study[J]. Int J Environ Health Res, 2024, 34(5): 2378-2386. doi: 10.1080/09603123.2023.2251406
|
[30] |
LANGERBEINS P, HALLEK M. COVID-19 in patients with hematologic malignancy[J]. Blood, 2022, 140(3): 236-252. doi: 10.1182/blood.2021012251
|
[31] |
EVENS A M, JOVANOVIC B D, SU Y C, et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases: meta-analysis and examination of FDA safety reports[J]. Ann Oncol, 2011, 22(5): 1170-1180. doi: 10.1093/annonc/mdq583
|
[32] |
CATTANEO C, CANCELLI V, IMBERTI L, et al. Production and persistence of specific antibodies in COVID-19 patients with hematologic malignancies: role of rituximab[J]. Blood Cancer J, 2021, 11(9): 151. doi: 10.1038/s41408-021-00546-9
|
[33] |
HUESO T, POUDEROUX C, PÉRÉ H, et al. Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19[J]. Blood, 2020, 136(20): 2290-2295. doi: 10.1182/blood.2020008423
|
[34] |
BILICH T, ROERDEN M, MARINGER Y, et al. Preexisting and post-COVID-19 immune responses to SARS-CoV-2 in patients with cancer[J]. Cancer Discov, 2021, 11(8): 1982-1995. doi: 10.1158/2159-8290.CD-21-0191
|
[35] |
GRIFONI A, WEISKOPF D, RAMIREZ S I, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals[J]. Cell, 2020, 181(7): 1489-1501. e15. doi: 10.1016/j.cell.2020.05.015
|
[36] |
SEKINE T, PEREZ-POTTI A, RIVERA-BALLESTEROS O, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19[J]. Cell, 2020, 183(1): 158-168. e14. doi: 10.1016/j.cell.2020.08.017
|
[37] |
CHOI Y S, KAGEYAMA R, ETO D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6[J]. Immunity, 2011, 34(6): 932-946. doi: 10.1016/j.immuni.2011.03.023
|
[38] |
GHIELMINI M, SCHMITZ S F, COGLIATTI S B, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule[J]. Blood, 2004, 103(12): 4416-4423. doi: 10.1182/blood-2003-10-3411
|
[39] |
GAFTER-GVILI A, POLLIACK A. Bendamustine associated immune suppression and infections during therapy of hematological malignancies[J]. Leuk Lymphoma, 2016, 57(3): 512-519. doi: 10.3109/10428194.2015.1110748
|
[40] |
NAKAJIMA Y, OGAI A, FURUKAWA K, et al. Prolonged viral shedding of SARS-CoV-2 in an immunocompromised patient[J]. J Infect Chemother, 2021, 27(2): 387-389. doi: 10.1016/j.jiac.2020.12.001
|
[41] |
武智敏, 顾华丽, 袁海峰, 等. 淋巴瘤合并新型冠状病毒肺炎1例并文献复习[J]. 青岛大学学报: 医学版, 2024, 60(2): 1-4.
|
[42] |
MANCUSO S, MATTANA M, CARLISI M, et al. Effects of B-cell lymphoma on the immune system and immune recovery after treatment: the paradigm of targeted therapy[J]. Int J Mol Sci, 2022, 23(6): 3368. doi: 10.3390/ijms23063368
|
[43] |
GARCÍA MUÑOZ R, IZQUIERDO-GIL A, MUÑOZ A, et al. Lymphocyte recovery is impaired in patients with chronic lymphocytic leukemia and indolent non-Hodgkin lymphomas treated with bendamustine plus rituximab[J]. Ann Hematol, 2014, 93(11): 1879-1887. doi: 10.1007/s00277-014-2135-8
|
[44] |
LAMURE S, DULÉRY R, BLASI R D, et al. Determinants of outcome in Covid-19 hospitalized patients with lymphoma: a retrospective multicentric cohort study[J]. EClinicalMedicine, 2020, 27: 100549. doi: 10.1016/j.eclinm.2020.100549
|
[45] |
CHEMALY R F, GHOSH S, BODEY G P, et al. Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients: a retrospective study at a major cancer center[J]. Medicine, 2006, 85(5): 278-287. doi: 10.1097/01.md.0000232560.22098.4e
|
[46] |
YIGENOGLU T N, ATA N, ALTUNTAS F, et al. The outcome of COVID-19 in patients with hematological malignancy[J]. J Med Virol, 2021, 93(2): 1099-1104. doi: 10.1002/jmv.26404
|
[47] |
MEHTA V, GOEL S, KABARRITI R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system[J]. Cancer Discov, 2020, 10(7): 935-941. doi: 10.1158/2159-8290.CD-20-0516
|
[48] |
葛童, 刘辉, 王镇灏, 等. 接受CAR-T细胞治疗的复发/难治性B细胞非霍奇金淋巴瘤患者新型冠状病毒感染特点及其影响因素[J]. 中华血液学杂志, 2023, 44(10): 825-831.
|
[49] |
XIAO X B, CHEN P P, ZHONG Y D, et al. Outcomes and risk factors of SARS-CoV-2 omicron variant in B-cell lymphoma patients following CD19 targeted CAR-T therapy[J]. Cancer Med, 2023, 12(22): 20838-20846. doi: 10.1002/cam4.6657
|