ZHU Guanghao, ZHU Minhui, ZHENG Hongliang. Research progress on the role of long non-coding RNA in regulating cancer radiosensitivity[J]. Journal of Clinical Medicine in Practice, 2024, 28(16): 142-148. DOI: 10.7619/jcmp.20240768
Citation: ZHU Guanghao, ZHU Minhui, ZHENG Hongliang. Research progress on the role of long non-coding RNA in regulating cancer radiosensitivity[J]. Journal of Clinical Medicine in Practice, 2024, 28(16): 142-148. DOI: 10.7619/jcmp.20240768

Research progress on the role of long non-coding RNA in regulating cancer radiosensitivity

More Information
  • Received Date: February 24, 2024
  • Revised Date: May 05, 2024
  • The regulatory role of long non-coding RNA (lncRNA) in cancer radiosensitivity has obtained increasing attention. Radiotherapy is one of the primary treatment methods for cancer, yet some patients experience disease progression or recurrence due to radioresistance. Exploring the regulatory mechanisms of radiosensitivity during cancer radiotherapy and identifying new molecular therapeutic targets are crucial for enhancing the efficacy of cancer radiotherapy. LncRNA can participate in the response of cancer to radiotherapy and regulate cancer radiosensitivity through various pathways, including modulation of the DNA damage response, apoptosis, cancer stem cells, and epithelial-mesenchymal transition (EMT). This study discussed the research progress on the mechanisms of lncRNA in the field of cancer radiotherapy, highlighting their important roles in enhancing tumor radiosensitivity.

  • [1]
    MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009, 10(3): 155-159.
    [2]
    DELANEY G, JACOB S, FEATHERSTONE C, et al. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines[J]. Cancer, 2005, 104(6): 1129-1137.
    [3]
    SMITH L, QUTOB O, WATSON M B, et al. Proteomic identification of putative biomarkers of radiotherapy resistance: a possible role for the 26S proteasome[J]. Neoplasia, 2009, 11(11): 1194-1207.
    [4]
    黄益镌. 长链非编码RNA ANRIL通过维持ATR蛋白稳定性促进肺癌细胞辐射损伤的同源重组修复[D]. 上海: 中国人民解放军海军军医大学, 2022.
    [5]
    SHIMURA T, KAKUDA S, OCHIAI Y, et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression[J]. Oncogene, 2010, 29(34): 4826-4837.
    [6]
    DU Z P, ZHANG F X, LIU L, et al. LncRNA ANRIL promotes HR repair through regulating PARP1 expression by sponging miR-7-5p in lung cancer[J]. BMC Cancer, 2023, 23(1): 130.
    [7]
    CHEN Y Y, SHEN H, LIU T T, et al. ATR-binding lncRNA ScaRNA2 promotes cancer resistance through facilitating efficient DNA end resection during homologous recombination repair[J]. J Exp Clin Cancer Res, 2023, 42(1): 256.
    [8]
    ZHANG Y Y, HE Q, HU Z Y, et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer[J]. Nat Struct Mol Biol, 2016, 23(6): 522-530.
    [9]
    WANG X X, LIU H, SHI L M, et al. LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation[J]. Cell Cycle, 2018, 17(4): 439-447.
    [10]
    CHEN Y F, LI Z M, DONG Z Z, et al. 14-3-3σ contributes to radioresistance by regulating DNA repair and cell cycle via PARP1 and CHK2[J]. Mol Cancer Res, 2017, 15(4): 418-428.
    [11]
    LI Z J, ZHOU Y, TU B, et al. Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression[J]. J Oral Pathol Med, 2017, 46(8): 583-590.
    [12]
    GANOTH D, BORNSTEIN G, KO T K, et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27[J]. Nat Cell Biol, 2001, 3(3): 321-324.
    [13]
    FOTOUHI GHIAM A, TAEB S, HUANG X Y, et al. Long non-coding RNA urothelial carcinoma associated 1(UCA1) mediates radiation response in prostate cancer[J]. Oncotarget, 2017, 8(3): 4668-4689.
    [14]
    WANG Z. LncRNA CCAT1 downregulation increases the radiosensitivity of non-small cell lung cancer cells[J]. 2021, 37(8): 654-663.
    [15]
    KRAMER D L, VUJCIC S, DIEGELMAN P, et al. Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells[J]. Cancer Res, 1999, 59(6): 1278-1286.
    [16]
    ZUO Z K, JI S L, HE L L, et al. LncRNA TTN-AS1/miR-134-5p/PAK3 axis regulates the radiosensitivity of human large intestine cancer cells through the P21 pathway and AKT/GSK-3β/β-catenin pathway[J]. Cell Biol Int, 2020, 44(11): 2284-2292.
    [17]
    HE Y, JING Y Z, WEI F, et al. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma[J]. Cell Death Dis, 2018, 9(2): 235.
    [18]
    ZAMAN S, WANG R, GANDHI V. Targeting the apoptosis pathway in hematologic malignancies[J]. Leuk Lymphoma, 2014, 55(9): 1980-1992.
    [19]
    CHEN J X, SHEN Z P, ZHENG Y D, et al. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR[J]. Int J Clin Exp Pathol, 2015, 8(7): 7878-7886.
    [20]
    MAO A H, TANG J Z, TANG D P, et al. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells[J]. J Cancer, 2020, 11(21): 6356-6364.
    [21]
    LI Y, MA X, LI J, et al. LncRNA gas5 regulates granulosa cell apoptosis and viability following radiation by X-ray through sponging miR-205-5p and Wnt/β-catenin signaling pathway ingranulosa cell tumor of ovary[J]. Trop J Pharm Res, 2021, 19(12): 2491-2498.
    [22]
    CHEN L J, YUAN D F, YANG Y C, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for gastric cancer by targeting the β-catenin signaling pathway[J]. J Cell Biochem, 2019, 120(4): 6178-6187.
    [23]
    HAN P B, JI X J, ZHANG M, et al. Upregulation of lncRNA LINC00473 promotes radioresistance of HNSCC cells through activating Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(21): 7305-7313.
    [24]
    ZHONG Q M, CHEN Y F, CHEN Z L. LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis[J]. Cell Cycle, 2020, 19(1): 53-66.
    [25]
    HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662.
    [26]
    LIU J Q, ZHOU R Z, DENG M, et al. RETRACTED ARTICLE: Long non-coding RNA DIO3OS binds to microRNA-130b to restore radiosensitivity in esophageal squamous cell carcinoma by upregulating PAX9[J]. Cancer Gene Ther, 2022, 29(6): 870.
    [27]
    LIU H X, CHEN Q P, ZHENG W, et al. LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 axis[J]. Int J Mol Sci, 2023, 24(3): 3047.
    [28]
    ZHANG S Q, WANG B, XIAO H W, et al. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p[J]. Thorac Cancer, 2020, 11(7): 1801-1816.
    [29]
    WANG Y J, WANG C T, CHEN C, et al. Long non-coding RNA NEAT1 regulates epithelial membrane protein 2 expression to repress nasopharyngeal carcinoma migration and irradiation-resistance through miR-101-3p as a competing endogenous RNA mechanism[J]. Oncotarget, 2017, 8(41): 70156-70171.
    [30]
    GAO J B, LIU L Y, LI G L, et al. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis[J]. Int J Biol Macromol, 2019, 126: 994-1001.
    [31]
    LIN J, LIU Z W, LIAO S S, et al. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy[J]. Genomics, 2020, 112(3): 2173-2185.
    [32]
    卡比努尔·阿里马斯, 陈海林, 艾山江·木合塔尔, 等. 长链非编码RNA SLCO4A1-AS1靶向微小RNA-615-5p对食管癌细胞增殖、凋亡和炎症因子表达的影响[J]. 实用临床医药杂志, 2024, 28(1): 13-19. doi: 10.7619/jcmp.20233173
    [33]
    DAWOOD S, AUSTIN L, CRISTOFANILLI M. Cancer stem cells: implications for cancer therapy[J]. Oncology, 2014, 28(12): 1101-1107, 1110.
    [34]
    KRAUSE M, DUBROVSKA A, LINGE A, et al. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments[J]. Adv Drug Deliv Rev, 2017, 109: 63-73.
    [35]
    ZHANG S, YANG R, OUYANG Y J, et al. Cancer stem cells: a target for overcoming therapeutic resistance and relapse[J]. Cancer Biol Med, 2023, 20(12): 985-1020.
    [36]
    XIAO S Y, YAN Z G, ZHU X D, et al. LncRNA DLGAP1-AS2 promotes the radioresistance of rectal cancer stem cells by upregulating CD151 expression via E2F1[J]. Transl Oncol, 2022, 18: 101304.
    [37]
    LI B J, LV Y J, ZHANG C, et al. lncRNA HOXA11-AS maintains the stemness of oral squamous cell carcinoma stem cells and reduces the radiosensitivity by targeting miR-518a-3p/PDK1[J]. J Oral Pathol Med, 2023, 52(3): 216-225.
    [38]
    PEI R F, ZHAO L, DING Y R, et al. JMJD6-BRD4 complex stimulates lncRNA HOTAIR transcription by binding to the promoter region of HOTAIR and induces radioresistance in liver cancer stem cells[J]. J Transl Med, 2023, 21(1): 752.
    [39]
    BAO S D, WU Q L, MCLENDON R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760.
    [40]
    ZHU C Y, LI K K, JIANG M W, et al. RBM5-AS1 promotes radioresistance in medulloblastoma through stabilization of SIRT6 protein[J]. Acta Neuropathol Commun, 2021, 9(1): 123.
    [41]
    JIN C, YAN B C, LU Q, et al. The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma[J]. Tumour Biol, 2016, 37(3): 4025-4033.
    [42]
    FORONI C, BROGGINI M, GENERALI D, et al. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact[J]. Cancer Treat Rev, 2012, 38(6): 689-697.
    [43]
    CREIGHTON C J, CHANG J C, ROSEN J M. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer[J]. J Mammary Gland Biol Neoplasia, 2010, 15(2): 253-260.
    [44]
    ZHANG J N, DING L X, SUN G F, et al. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition[J]. Toxicol Res, 2020, 9(2): 107-116.
    [45]
    LV J Q, ZHANG S M, LIU Y, et al. NR2F1-AS1/miR-190a/PHLDB2 induces the Epithelial-Mesenchymal transformation process in gastric cancer by promoting phosphorylation of Akt3[J]. Front Cell Dev Biol, 2021, 9: 688949.
    [46]
    TAN J M, QIU K F, LI M Y, et al. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells[J]. FEBS Lett, 2015, 589(20 Pt B): 3175-3181.
    [47]
    YANG Q S, LI B, XU G, et al. Long noncoding RNA LINC00483/microRNA-144 regulates radiosensitivity and epithelial-mesenchymal transition in lung adenocarcinoma by interacting with HOXA10[J]. J Cell Physiol, 2019, 234(7): 11805-11821.
    [48]
    BRODIE S, LEE H K, JIANG W, et al. The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells[J]. Oncotarget, 2017, 8(19): 31785-31801.
    [49]
    LU Y Y, LI T, WEI G B, et al. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma[J]. Tumour Biol, 2016, 37(9): 11733-11741.
    [50]
    CHEN Y, SHEN Z T, ZHI Y R, et al. Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a CeRNA for microRNA-145 to regulate RAD18 expression[J]. Arch Biochem Biophys, 2018, 645: 117-125.
    [51]
    YANG X D, LIU W, XU X H, et al. Downregulation of long non-coding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelial-mesenchymal transition in colorectal cancer cells[J]. Oncol Rep, 2018, 40(3): 1554-1564.
    [52]
    XIN Y, JIANG F, YANG C S, et al. Role of autophagy in regulating the radiosensitivity of tumor cells[J]. J Cancer Res Clin Oncol, 2017, 143(11): 2147-2157.
    [53]
    YANG Y, YANG Y H, YANG X, et al. Autophagy and its function in radiosensitivity[J]. Tumour Biol, 2015, 36(6): 4079-4087.
    [54]
    JIANG A M, LIU N, BAI S H, et al. Identification and validation of an autophagy-related long non-coding RNA signature as a prognostic biomarker for patients with lung adenocarcinoma[J]. J Thorac Dis, 2021, 13(2): 720-734.
    [55]
    CAI J H, WANG R, CHEN Y X, et al. LncRNA FIRRE regulated endometrial cancer radiotherapy sensitivity via the miR-199b-5p/SIRT1/BECN1 axis-mediated autophagy[J]. Genomics, 2024, 116(1): 110750.
    [56]
    GAO W J, QIAO M, LUO K. Long noncoding RNA TP53TG1 contributes to radioresistance of glioma cells via miR-524-5p/RAB5A axis[J]. Cancer Biother Radiopharm, 2021, 36(7): 600-612.
    [57]
    ZHENG J L, WANG B Y, ZHENG R, et al. Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells[J]. Cell Death Dis, 2020, 11(9): 758.
    [58]
    LIU H X, ZHENG W, CHEN Q P, et al. lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway[J]. Int J Mol Sci, 2021, 22(3): 1407.
    [59]
    ZANDI, SCHNUG E. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective[J]. Biology, 2022, 11(2): 155.
    [60]
    AHMADOV U, PICARD D, BARTL J, et al. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma[J]. Cell Death Dis, 2021, 12(10): 885.
    [61]
    WANG C H, HAN C F, ZHANG Y B, et al. LncRNA PVT1 regulate expression of HIF1α via functioning as CeRNA for miR-199a-5p in non-small cell lung cancer under hypoxia[J]. Mol Med Rep, 2018, 17(1): 1105-1110.
    [62]
    CHEN Q N, WEI C C, WANG Z X, et al. Long non-coding RNAs in anti-cancer drug resistance[J]. Oncotarget, 2017, 8(1): 1925-1936.
    [63]
    CHEN B Q, DRAGOMIR M P, YANG C, et al. Targeting non-coding RNAs to overcome cancer therapy resistance[J]. Signal Transduct Target Ther, 2022, 7(1): 121.
    [64]
    MILLER A D. Delivering the promise of small ncRNA therapeutics[J]. Ther Deliv, 2014, 5(5): 569-589.
  • Related Articles

    [1]CHEN Shuang, ZHOU Yingguang. Analysis in medication rule of oral administration of Chinese herbs for postoperative swelling after fracture based on data mining[J]. Journal of Clinical Medicine in Practice, 2021, 25(12): 13-17. DOI: 10.7619/jcmp.20211809
    [4]WANG Yanxia, CHE Aizhi. Application effect of nursing intervention on postoperative swelling of patients with lower limb fracture[J]. Journal of Clinical Medicine in Practice, 2016, (4): 90-92,103. DOI: 10.7619/jcmp.201604028
    [5]YANG Liu. Influence of comprehensive nursing intervention on limb swelling and life quality of fracture patients after operation[J]. Journal of Clinical Medicine in Practice, 2015, (22): 79-81. DOI: 10.7619/jcmp.201522026
    [8]HOU Tuan-jie, LIU Yi-lun, LI Ping-song, HUANG Jin-hua, SHI Ze-hong, MA Le, CHEN Xiao. Liposuction combined with minimally- invasive gland resection under tumescent anesthesia for gynecomastia[J]. Journal of Clinical Medicine in Practice, 2012, (15): 70-71.
  • Cited by

    Periodical cited type(3)

    1. 陈文婷,鲍观兴,黄腊根. 氨磺必利对抑郁症患者心理状况及疲乏症状的影响. 药品评价. 2023(02): 166-168 .
    2. 徐太磊,冯晓莉. 草酸艾司西酞普兰联合氨磺必利对抑郁症患者临床效果及心理状态分析. 中外医疗. 2021(09): 4-6+17 .
    3. 高云,吕爽,崔文艳,罗春霞,卢伟宇,钟宇龙. 舒肝解郁胶囊联合阿立哌唑治疗精神分裂伴发抑郁症状的效果及对血清总超氧化物歧化酶的影响. 中国当代医药. 2021(22): 4-7 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return