YANG Jingjing, GUO Huaijuan, MAO Jingxian, WANG Jiaxin, WANG Ying, YAN Xuebing, PAN Xiaoping. Construction and validation of a risk model for colorectal cancer prognosis based on N6-methyladenosine modification and immune infiltration[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 1-8. DOI: 10.7619/jcmp.20240201
Citation: YANG Jingjing, GUO Huaijuan, MAO Jingxian, WANG Jiaxin, WANG Ying, YAN Xuebing, PAN Xiaoping. Construction and validation of a risk model for colorectal cancer prognosis based on N6-methyladenosine modification and immune infiltration[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 1-8. DOI: 10.7619/jcmp.20240201

Construction and validation of a risk model for colorectal cancer prognosis based on N6-methyladenosine modification and immune infiltration

More Information
  • Received Date: January 10, 2024
  • Revised Date: March 10, 2024
  • Available Online: April 21, 2024
  • Objective 

    To investigate the prognostic value of N6-methyladenosine (m6A) modification related genes and immune infiltration in colorectal cancer (CRC) and construct a risk model for predicting outcome of patients.

    Methods 

    The transcriptome data and matched clinical information of CRC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The prognostic value of m6A modification related genes and immune infiltration were investigated using the consensus clustering method and single sample gene set enrichment analysis. The weighted gene co-expression network analysis (WGCNA) was used to identify prognostic genes related with m6A modification and immune infiltration. Lasso regression analysis was used to construct a multi-gene risk model. The expression differences of prognostic genes identified were further validated through expression differential analysis in the Gene Expression Profiling Interactive Analysis (GEPIA) database. Finally, the Kaplan-Meier was used to evaluate the predicting performance of the model in different subgroups and external validation cohorts.

    Results 

    Both the m6A modification and immune infiltration phenotype could effectively stratify the prognosis of CRC patients from the TCGA cohort. Most m6A modification related genes were significantly correlated with immune infiltration in CRC tissues. Four following prognostic genes were selected using the WGCNA method combined with Lasso regression analysis: intelectin-1, lymphocyte antigen 6 complex locus G6D, atonal homolog 1 and matrix metalloproteinase 28. In colorectal cancer tissues, the expression levels of lymphocyte antigen 6 complex locus G6D and matrix metalloproteinase 28 exhibited significant differences compared to adjacent non-cancerous tissues (P < 0.05). The risk model constructed based on the above prognostic genes can effectively identify the potential risk population with poor prognosis in different clinical subgroups of the TCGA cohort and the GEO validated cohort.

    Conclusion 

    A risk model based on m6A modification and immune infiltration could effectively predict the clinical outcome of CRC patients, and related prognostic genes have potential to be developed as molecular targets for CRC therapy.

  • [1]
    SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [2]
    JIANG X H, JIN Z Y, YANG Y Z, et al. m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis[J]. Front Oncol, 2023, 13: 1162300. doi: 10.3389/fonc.2023.1162300
    [3]
    胡茹, 李东霖, 严雪冰. 甲基转移酶样蛋白14与肿瘤[J]. 国际肿瘤学杂志, 2022, 49(8): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX202405003.htm
    [4]
    ELEMAM N M, TALAAT I M, ASSAL R A, et al. Editorial: understanding the crosstalk between immune cells and the tumor microenvironment in cancer and its implications for immunotherapy[J]. Front Med, 2023, 10: 1202581. doi: 10.3389/fmed.2023.1202581
    [5]
    ZHENG Z W, WIEDER T, MAUERER B, et al. T cells in colorectal cancer: unravelling the function of different T cell subsets in the tumor microenvironment[J]. Int J Mol Sci, 2023, 24(14): 11673. doi: 10.3390/ijms241411673
    [6]
    PERICLEOUS S, BHOGAL R H, MAVROEIDIS V K. The role of circulating biomarkers in the early detection of recurrent colorectal cancer following resection of liver metastases[J]. Front Biosci, 2022, 27(6): 189. doi: 10.31083/j.fbl2706189
    [7]
    任燕珍, 李蕊仙, 陈建娥, 等. 解偶联蛋白2的表达与结直肠癌患者临床病理特征和预后的关系[J]. 实用临床医药杂志, 2022, 26(23): 20-25. doi: 10.7619/jcmp.20222104
    [8]
    LIN Y, SHI H J, WU L P, et al. Research progress of N6-methyladenosine in colorectal cancer: a review[J]. Medicine, 2023, 102(47): e36394. doi: 10.1097/MD.0000000000036394
    [9]
    QU X, TAN H H, MAO J X, et al. Identification of a novel prognostic signature correlated with epithelial-mesenchymal transition, N6-methyladenosine modification, and immune infiltration in colorectal cancer[J]. Cancer Med, 2023, 12(5): 5926-5938. doi: 10.1002/cam4.5384
    [10]
    ZHANG Z, MEI Y, HOU M X. Knockdown RBM15 inhibits colorectal cancer cell proliferation and metastasis via N6-methyladenosine (m6A) modification of MyD88 mRNA[J]. Cancer Biother Radiopharm, 2022, 37(10): 976-986.
    [11]
    ZHANG Z, WANG L, ZHAO L, et al. N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation[J]. Clin Transl Med, 2022, 12(8): e940. doi: 10.1002/ctm2.940
    [12]
    LI M C, LIU Z H, HOU Z, et al. Oncogenic zinc finger protein ZNF687 accelerates lung adenocarcinoma cell proliferation and tumor progression by activating the PI3K/AKT signaling pathway[J]. Thorac Cancer, 2023, 14(14): 1223-1238. doi: 10.1111/1759-7714.14856
    [13]
    JIANG T, XING L S, ZHAO L P, et al. Comprehensive analysis of m6A related gene mutation characteristics and prognosis in colorectal cancer[J]. BMC Med Genomics, 2023, 16(1): 105. doi: 10.1186/s12920-023-01509-8
    [14]
    SUN C L, CHEN J, XING Z W, et al. METTL14 suppresses cancer stem cell phenotype of colorectal cancer via regulating of β-catenin/NANOG[J]. J Cancer, 2023, 14(8): 1407-1416. doi: 10.7150/jca.82158
    [15]
    XU Y Q, BAO Y X, QIU G Z, et al. METTL3 promotes proliferation and migration of colorectal cancer cells by increasing SNHG1 stability[J]. Mol Med Rep, 2023, 28(5): 217. doi: 10.3892/mmr.2023.13104
    [16]
    BEILMANN-LEHTONEN I, KASURINEN J, HAGSTRÖ M J, et al. High tissue expression of TLRs combined with high density of tumor infiltrating lymphocytes predicts a better prognosis in colorectal cancer patients[J]. PLoS One, 2023, 18(1): e0280085. doi: 10.1371/journal.pone.0280085
    [17]
    KARJULA T, ELOMAA H, NISKAKANGAS A, et al. CD3+ and CD8+ T-cell-based immune cell score and PD-(L)1 expression in pulmonary metastases of microsatellite stable colorectal cancer[J]. Cancers, 2022, 15(1): 206. doi: 10.3390/cancers15010206
    [18]
    SHEMBREY C, FOROUTAN M, HOLLANDE F. A new natural killer cell-specific gene signature predicting recurrence in colorectal cancer patients[J]. Front Immunol, 2022, 13: 1011247.
    [19]
    ZHAO X J, LIU J Z, LIU S Z, et al. Construction and validation of an immune-related prognostic model based on TP53 status in colorectal cancer[J]. Cancers, 2019, 11(11): 1722. doi: 10.3390/cancers11111722
    [20]
    GE J, LIU S L, ZHENG J X, et al. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8+ T cell infiltration in colorectal cancer[J]. Transl Oncol, 2023, 34: 101683. doi: 10.1016/j.tranon.2023.101683
    [21]
    CHEN H R, PAN Y S, ZHOU Q M, et al. METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer[J]. Gastroenterology, 2022, 163(4): 891-907. doi: 10.1053/j.gastro.2022.06.024
    [22]
    KATSUYA N, SENTANI K, SEKINO Y, et al. Clinicopathological significance of intelectin-1 in colorectal cancer: Intelectin-1 participates in tumor suppression and favorable progress[J]. Pathol Int, 2020, 70(12): 943-952. doi: 10.1111/pin.13027
    [23]
    CORRALES L, HIPP S, MARTIN K, et al. LY6G6D is a selectively expressed colorectal cancer antigen that can be used for targeting a therapeutic T-cell response by a T-cell engager[J]. Front Immunol, 2022, 13: 1008764. doi: 10.3389/fimmu.2022.1008764
    [24]
    SAJADI M, FAZILTI M, NAZEM H, et al. The expression changes of transcription factors including ANKZF1, LEF1, CASZ1, and ATOH1 as a predictor of survival rate in colorectal cancer: a large-scale analysis[J]. Cancer Cell Int, 2022, 22(1): 339. doi: 10.1186/s12935-022-02751-3
    [25]
    DRURY J, RYCHAHOU P G, KELSON C O, et al. Upregulation of CD36, a fatty acid translocase, promotes colorectal cancer metastasis by increasing MMP28 and decreasing E-cadherin expression[J]. Cancers, 2022, 14(1): 252. doi: 10.3390/cancers14010252
  • Related Articles

    [1]LI Tianyi, REN Yue, SONG Zhenya, JIANG Meinan, LI Mengyang, CHEN Yong, YIN Xudong. Research progress of pan-immune inflammation value in prognosis and effect of tumors[J]. Journal of Clinical Medicine in Practice, 2024, 28(5): 139-143. DOI: 10.7619/jcmp.20233348
    [2]HU Ru, GUO Huaijuan, WANG Ying, YAN Xuebing, JIANG Qian. Value of C-PLAN index as a prognostic indicator of advanced esophageal cancer patients treated with immune checkpoint inhibitors[J]. Journal of Clinical Medicine in Practice, 2024, 28(1): 1-6, 12. DOI: 10.7619/jcmp.20232676
    [3]JI Chao, CHEN Yixiao, LIU Kai, SU Xiaochen, TENG Menghao, GUO Yan, JI Wenchen, LI Meng. Screening of diagnostic biomarkers and their relations with immune cell infiltration in osteoporosis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 1-6. DOI: 10.7619/jcmp.20231718
    [4]LI Donglin, GUO Huaijuan, WANG Ying, YAN Xuebing, LU Meiling. Clinical investigation in abundance of Fusobacterium nucleatum in tumor tissues as a prognostic biomarker for stage Ⅱ colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 25-31. DOI: 10.7619/jcmp.20230271
    [5]WANG Qiqi, YE Bicheng, WANG Changcheng. Correlation between AHSA1 expression and prognosis of hepatocellular carcinoma based on TCGA database analysis[J]. Journal of Clinical Medicine in Practice, 2022, 26(1): 8-17. DOI: 10.7619/jcmp.20213231
    [6]JU Yuejun, SHEN Ting, CHEN Gang, KONG Yinghong. Correlations between LncRNA CRNDE and prognosis, immune infiltration of papillary thyroid carcinoma[J]. Journal of Clinical Medicine in Practice, 2021, 25(24): 20-24. DOI: 10.7619/jcmp.20212903
    [7]WEI Xin, LIU Xia, SHI Lin, YUN Fen, JIA Yongfeng. Effect of fucosyltransferase 8 expression on immunecell infiltration and survival prognosis in breast cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 76-81, 87. DOI: 10.7619/jcmp.20211784
    [8]LIU Dehui, YAN Yulan. Research progress of circRNAs in diagnosis and prognosis of lung cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(13): 124-128. DOI: 10.7619/jcmp.20211851
    [9]ZHANG Zhou, YANG Tingsong, CHEN Xi, WANG Qun, ZHANG Ti, FANG Lin. Correlation between SIRT2 expression in gastric carcinoma tissues and clinical prognosis in gastric cancer patients[J]. Journal of Clinical Medicine in Practice, 2015, (9): 69-72. DOI: 10.7619/jcmp.201509020
    [10]LI Hua, ZHANG Jinsong, ZHANG Qin, LIU Xia, CHEN Yan. Analysis on prognosis factors of acute paraquat intoxication and its emergency treatment[J]. Journal of Clinical Medicine in Practice, 2013, (23): 56-58. DOI: 10.7619/jcmp.201323016
  • Cited by

    Periodical cited type(15)

    1. 吴怀琼,孙文静,林坤,傅杰,马云云. ADOPT干预模式对肝癌腹水患者FACT-G评分及症状困扰程度的影响. 国际护理学杂志. 2024(03): 479-483 .
    2. 夏漫. ADOPT模式的健康教育与情绪引导在消化内镜诊疗中的联合应用价值. 广州医药. 2024(02): 192-197 .
    3. 闫亚文,赵勤芳,汪改改,张凤莲. ADOPT护理模式对高龄足月初产妇母乳喂养率、心理韧性及家庭幸福感的影响. 海南医学. 2024(07): 1031-1036 .
    4. 肖红,张咏梅,徐小艳,秦意,李燕. 问题解决模式在临床护理应用的研究进展. 当代护士(中旬刊). 2024(07): 11-15 .
    5. 吴少梅,刘会茹,陈俊兰. 基于HEART沟通模式的“态度-定义-开放思维-计划-实施”护理方案在数字化导板种植中的应用. 中国当代医药. 2024(21): 176-180 .
    6. 陈红,唐金,韩冬梅. ADOPT模式护理在行放射治疗老年肺癌患者中的应用效果. 中西医结合护理(中英文). 2023(02): 112-114 .
    7. 初淑媛,刘兴华,袁慧婷. ADOPT护理模式对全喉切除术患者自我护理质量及生活质量的改善作用. 中国实用乡村医生杂志. 2023(02): 39-41+45 .
    8. 孙露颖,戴欣,闫澍,王艳. ADOPT模式护理干预对前牙外伤患者即刻种植修复效果的影响. 中国医刊. 2023(10): 1126-1129 .
    9. 叶梅珍,江烟青,王琼. ADOPT护理模式联合团体干预对鼻咽癌患者的影响. 齐鲁护理杂志. 2023(24): 9-12 .
    10. 彭江英,苏俊玲,郭春蕊. ADOPT模式在乳腺癌PICC置管患者中的应用. 中华现代护理杂志. 2022(09): 1233-1237 .
    11. 李佩佩,张玲玲. 基于ADOPT护理策略对脑梗死偏瘫患者神经功能及步态的影响. 现代医药卫生. 2022(17): 3006-3009 .
    12. 张红梅. 循证护理在鼻咽癌患者放疗护理中的效果观察及对并发症发生率的影响. 中国医药指南. 2021(15): 11-13 .
    13. 刘晓新,刘进炼,顾士杨,董桂秋,吴秋月,徐媛. ADOPT问题解决模式在糖尿病肾病早期微量白蛋白尿病人中的应用效果观察. 循证护理. 2021(17): 2342-2345 .
    14. 陈季云,刘琪,汤珍珍. 鼻咽癌患者在放射治疗期间行ADOPT护理模式联合团体干预对其生活质量和张口困难程度的影响. 中西医结合护理(中英文). 2021(03): 110-112 .
    15. 赵姗姗. 晚期胃癌患者接受化学药物治疗期间应用不同护理模式的效果比较. 中西医结合护理(中英文). 2021(12): 157-159 .

    Other cited types(0)

Catalog

    Article views (231) PDF downloads (37) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return