Citation: | REN Zhifang, REN Jie, LIU Rui, XIAO Jinfeng, QIN Jie. Research progress in the correlation between iron metabolism and type 2 diabetes mellitus as well as the regulatory role of glucagon-like peptide-1[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 138-142,148. DOI: 10.7619/jcmp.20233644 |
Iron metabolism plays a regulatory role in various metabolic diseases, and excessive iron accumulation can increase the risk of metabolic diseases, especially type 2 diabetes mellitus (T2DM). Pathological processes such as iron deposition, iron overload, and ferroptosis can activate oxidative stress, lipid peroxidation, autophagy, and other processes, promote the amplification of inflammatory reactions and the reduction of antioxidant capacity, gradually decline the function of pancreatic islet β-cells, thereby promoting the occurrence and development of T2DM. Glucagon-like peptide-1 (GLP-1) is a physiological hormone secreted by intestinal L cells. GLP-1 analogs or GLP-1 receptor agonists can regulate the body's iron metabolism process, inhibit iron deposition, iron overload, and ferroptosis-related inflammatory reactions, promote the proliferation and differentiation of pancreatic islet β-cells, thereby reducing insulin resistance, inhibiting endothelial cell damage, and playing an important role in the prevention and treatmentof T2DM and its complications.
[1] |
CHEN X, HUANG T T, SHI Y J, et al. A GLP-1 receptor agonist attenuates human islet amyloid polypeptide-induced autophagy and apoptosis in MIN6 cells[J]. Mol Med Rep, 2019, 19(2): 1365-1371.
|
[2] |
DE SANCTIS V, SOLIMAN A T, ELSEDFY H, et al. Diabetes and glucose metabolism in thalassemia major: an update[J]. Expert Rev Hematol, 2016, 9(4): 401-408. doi: 10.1586/17474086.2016.1136209
|
[3] |
HARRISON A V, LORENZO F R, MCCLAIN D A. Iron and the pathophysiology of diabetes[J]. Annu Rev Physiol, 2023, 85: 339-362. doi: 10.1146/annurev-physiol-022522-102832
|
[4] |
MARKU A, GALLI A, MARCIANI P, et al. Iron metabolism in pancreatic beta-cell function and dysfunction[J]. Cells, 2021, 10(11): 2841. doi: 10.3390/cells10112841
|
[5] |
吴晗, 于淼, 肖诚, 等. 铁过载及铁死亡与代谢相关脂肪性肝病的研究进展[J]. 中华糖尿病杂志, 2021, 13(8): 836-840.
|
[6] |
KANBOUR I, CHANDRA P, SOLIMAN A, et al. Severe liver iron concentrations (LIC) in 24 patients with β-thalassemia major: correlations with serum ferritin, liver enzymes and endocrine complications[J]. Mediterr J Hematol Infect Dis, 2018, 10(1): e2018062.
|
[7] |
SHU T T, LV Z G, XIE Y C, et al. Hepcidin as a key iron regulator mediates glucotoxicity-induced pancreatic β-cell dysfunction[J]. Endocr Connect, 2019, 8(3): 150-161. doi: 10.1530/EC-18-0516
|
[8] |
MIAO R Y, FANG X Y, ZHANG Y J, et al. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities[J]. Cell Death Dis, 2023, 14(3): 186. doi: 10.1038/s41419-023-05708-0
|
[9] |
PINTI M V, FINK G K, HATHAWAY Q A, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis[J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285. doi: 10.1152/ajpendo.00314.2018
|
[10] |
ALTAMURA S, MVDDER K, SCHLOTTERER A, et al. Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload[J]. Mol Metab, 2021, 51: 101235. doi: 10.1016/j.molmet.2021.101235
|
[11] |
ALTAMURA S, KOPF S, SCHMIDT J, et al. Uncoupled iron homeostasis in type 2 diabetes mellitus[J]. J Mol Med, 2017, 95(12): 1387-1398. doi: 10.1007/s00109-017-1596-3
|
[12] |
VILA CUENCA M, MARCHI G, BARQUÉA, et al. Genetic and clinical heterogeneity in thirteen new cases with aceruloplasminemia. atypical Anemia as a clue for an early diagnosis[J]. Int J Mol Sci, 2020, 21(7): 2374. doi: 10.3390/ijms21072374
|
[13] |
WU X G, LI Y, ZHANG S C, et al. Ferroptosis as a novel therapeutic target for cardiovascular disease[J]. Theranostics, 2021, 11(7): 3052-3059. doi: 10.7150/thno.54113
|
[14] |
ESHAK E S, ISO H, MARUYAMA K, et al. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: a large population-based prospective cohort study[J]. Clin Nutr, 2018, 37(2): 667-674. doi: 10.1016/j.clnu.2017.02.010
|
[15] |
COFFEY R, KNUTSON M D. The plasma membrane metal-ion transporter ZIP14 contributes to nontransferrin-bound iron uptake by human β-cells[J]. Am J Physiol Cell Physiol, 2017, 312(2): C169-C175. doi: 10.1152/ajpcell.00116.2016
|
[16] |
JAHNG J W S, ALSAADI R M, PALANIVEL R, et al. Iron overload inhibits late stage autophagic flux leading to insulin resistance[J]. EMBO Rep, 2019, 20(10): e47911. doi: 10.15252/embr.201947911
|
[17] |
ZHOU Y. The Protective Effects of Cryptochlorogenic Acid on β-Cells Function in Diabetes in vivo and vitro via Inhibition of Ferroptosis[J]. Diabetes Metab Syndr Obes, 2020, 13: 1921-1931. doi: 10.2147/DMSO.S249382
|
[18] |
BRUNI A, PEPPER A R, PAWLICK R L, et al. Ferroptosis-inducing agents compromise in vitro human islet viability and function[J]. Cell Death Dis, 2018, 9(6): 595. doi: 10.1038/s41419-018-0506-0
|
[19] |
SHA W X, HU F, XI Y, et al. Mechanism of ferroptosis and its role in type 2 diabetes mellitus[J]. J Diabetes Res, 2021, 2021: 9999612.
|
[20] |
ZHENG Y F, HU Q S, WU J L. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity[J]. Endocrine, 2022, 75(3): 781-793. doi: 10.1007/s12020-021-02933-5
|
[21] |
DU Q Q, WU X Y, MA K, et al. Silibinin alleviates ferroptosis of rat islet β cell INS-1 induced by the treatment with palmitic acid and high glucose through enhancing PINK1/parkin-mediated mitophagy[J]. Arch Biochem Biophys, 2023, 743: 109644. doi: 10.1016/j.abb.2023.109644
|
[22] |
ZHANG X H, JIANG L P, CHEN H B, et al. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells[J]. Toxicology, 2022, 465: 153048. doi: 10.1016/j.tox.2021.153048
|
[23] |
CHEN X P, LI H W, WANG Z Q, et al. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHⅡ/eNOS/NO pathway[J]. Eur J Pharmacol, 2020, 868: 172885. doi: 10.1016/j.ejphar.2019.172885
|
[24] |
HU W L, LIANG K H, ZHU H, et al. Ferroptosis and its role in chronic diseases[J]. Cells, 2022, 11(13): 2040. doi: 10.3390/cells11132040
|
[25] |
FANG X X, CAI Z X, WANG H, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J]. Circ Res, 2020, 127(4): 486-501. doi: 10.1161/CIRCRESAHA.120.316509
|
[26] |
WEILAND A, WANG Y M, WU W H, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880-4893. doi: 10.1007/s12035-018-1403-3
|
[27] |
BAI T, LI M X, LIU Y F, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med, 2020, 160: 92-102. doi: 10.1016/j.freeradbiomed.2020.07.026
|
[28] |
LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. doi: 10.1016/j.bbagen.2017.05.019
|
[29] |
LUO E F, LI H X, QIN Y H, et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction[J]. World J Diabetes, 2021, 12(2): 124-137. doi: 10.4239/wjd.v12.i2.124
|
[30] |
ALSHWAIYAT N M, AHMAD A, WAN HASSAN W M R, et al. Association between obesity and iron deficiency (Review)[J]. Exp Ther Med, 2021, 22(5): 1268. doi: 10.3892/etm.2021.10703
|
[31] |
PARMANAND B A, KELLINGRAY L, LE GALL G, et al. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study[J]. J Nutr Biochem, 2019, 67: 20-27. doi: 10.1016/j.jnutbio.2019.01.010
|
[32] |
LAUDISIO D, DE ALTERIIS G, VETRANI C, et al. Iron levels and markers of inflammation in a population of adults with severe obesity, a cross-sectional study[J]. Nutrients, 2023, 15(21): 4702. doi: 10.3390/nu15214702
|
[33] |
PACKER M. Alleviation of functional iron deficiency by SGLT2 inhibition in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2023, 25(5): 1143-1146. doi: 10.1111/dom.14963
|
[34] |
纪立农. 胰高糖素样肽-1受体激动剂改善代谢综合征的临床应用研究进展[J]. 中华糖尿病杂志, 2023, 15(12): 1177-1184.
|
[35] |
MAYENDRARAJ A, ROSENKILDE M M, GASBJERG L S. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation[J]. Peptides, 2022, 151: 170749. doi: 10.1016/j.peptides.2022.170749
|
[36] |
MARINHO T S, MARTINS F F, CARDOSO L E M, et al. Pancreatic islet cells disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment[J]. Biochimie, 2022, 193: 126-136. doi: 10.1016/j.biochi.2021.10.017
|
[37] |
WEI R, HONG T P. Glucagon-like peptide-1 promotes α-to-β cell transdifferentiation: how far is it from clinical application[J]. Diabetes Metab, 2019, 45(6): 601-602. doi: 10.1016/j.diabet.2019.01.003
|
[38] |
CARDOSO L E M, MARINHO T S, MARTINS F F, et al. Treatment with semaglutide, a GLP-1 receptor agonist, improves extracellular matrix remodeling in the pancreatic islet of diet-induced obese mice[J]. Life Sci, 2023, 319: 121502. doi: 10.1016/j.lfs.2023.121502
|
[39] |
YARIBEYGI H, SATHYAPALAN T, SAHEBKAR A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity[J]. Life Sci, 2019, 234: 116776. doi: 10.1016/j.lfs.2019.116776
|
[40] |
RODRIGUES T, BORGES P, MAR L, et al. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes[J]. Pharmacol Res, 2020, 161: 105198. doi: 10.1016/j.phrs.2020.105198
|
[41] |
SIMENTAL-MENDÍA L E, SÁNCHEZ-GARCÍA A, LINDEN-TORRES E, et al. Impact of glucagon-like peptide-1 receptor agonists on adiponectin concentrations: a meta-analysis of randomized controlled trials[J]. Brit J Clinical Pharma, 2021, 87(11): 4140-4149. doi: 10.1111/bcp.14855
|
[42] |
IGOILLO-ESTEVE M, OLIVEIRA A F, COSENTINO C, et al. Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia[J]. JCI Insight, 2020, 5(2): e134221. doi: 10.1172/jci.insight.134221
|
[43] |
SONG J X, AN J R, CHEN Q, et al. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice[J]. Bioengineered, 2022, 13(4): 8334-8348. doi: 10.1080/21655979.2022.2051858
|
[44] |
LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. doi: 10.1038/s41556-020-0461-8
|
[45] |
GUO T L, YAN W H, CUI X, et al. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis[J]. Mol Med, 2023, 29(1): 132. doi: 10.1186/s10020-023-00721-7
|
[46] |
AN J R, SU J N, SUN G Y, et al. Liraglutide alleviates cognitive deficit in db/db mice: involvement in oxidative stress, iron overload, and ferroptosis[J]. Neurochem Res, 2022, 47(2): 279-294. doi: 10.1007/s11064-021-03442-7
|
[47] |
WANG J, WU J, WU H, et al. Liraglutide protects pancreatic β-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy[J]. Mol Med Rep, 2015, 12(3): 4210-4218. doi: 10.3892/mmr.2015.3944
|
[48] |
胡珂昕, 唐珑佳, 章辉, 等. 胰高糖素样肽-1改善晚期糖基化终末产物诱导人主动脉内皮细胞铁死亡的机制研究[J]. 中华糖尿病杂志, 2023, 15(5): 409-415.
|
[1] | FANG Ying, ZHOU Cunrong, LU Zhibin, XIAO Zhichao, PAN Chunfeng. Application of nursing intervention based on information-motivation-behavioral skill model in CT-guided localization of patients with isolated pulmonary nodules[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 98-104. DOI: 10.7619/jcmp.20223201 |
[2] | ZHANG Liaoshen, RUAN Jie. Clinical significance of chest CT signs in diagnosis of heart failure[J]. Journal of Clinical Medicine in Practice, 2020, 24(6): 34-36. DOI: 10.7619/jcmp.202006009 |
[3] | MEI Xia, WANG Litong. Value of CT vascular signs of lung ground-glass nodule in differential diagnosis of pathologic subtypes of lung adenocarcinoma[J]. Journal of Clinical Medicine in Practice, 2020, 24(3): 22-25. DOI: 10.7619/jcmp.202003007 |
[4] | CHEN Jijun, LIU Jian, FAN Feifei, MO Fei, ZHAO Xinchun, ZHAO Peng, HAO Yuewen. MRI manifestations and pathological basis of atypical meningioma[J]. Journal of Clinical Medicine in Practice, 2019, 23(17): 69-71. DOI: 10.7619/jcmp.201917019 |
[5] | LIU Shu, HUAN Jing, SHE Yuanxia. Correlation analysis between pathological grading of ground-glass nodules and high resolution CT signs[J]. Journal of Clinical Medicine in Practice, 2019, 23(7): 56-59. DOI: 10.7619/jcmp.201907015 |
[6] | TU Yi, LIANG Zuotang. High-resolution CT manifestation and pathological analysis of different types of lung adenocarcinoma[J]. Journal of Clinical Medicine in Practice, 2017, (24): 6-9. DOI: 10.7619/jcmp.201724002 |
[7] | ZHANG Zhilin, SONG Xiao, TANG Jianhua, CUI Shujun, ZOU Dianjun, ZHU Xiaolong, GENG Hequn. CT imaging features of renal cell carcinoma and its pathological features[J]. Journal of Clinical Medicine in Practice, 2016, (7): 82-85. DOI: 10.7619/jcmp.201607024 |
[8] | LIU Xianming. Clinical pathological features of young patients with breast cancer[J]. Journal of Clinical Medicine in Practice, 2015, (15): 191-193. DOI: 10.7619/jcmp.201515067 |
[9] | CHEN Jun, YANG Jian, YANG Fei. Analysis in clinical and pathologic features of gastric in 67 children with bile reflux gastritis[J]. Journal of Clinical Medicine in Practice, 2014, (13): 159-162. DOI: 10.7619/jcmp.201413056 |
[10] | CHEN Xiongdou, LIU Xin, LIN Hanfeng. Comparative study of radiological and pathological findings of neuroendocrine tumors in pancreas[J]. Journal of Clinical Medicine in Practice, 2014, (7): 161-163. DOI: 10.7619/jcmp.201407058 |