Citation: | HUANG Jun, JIANG Jingjing, BAO Yunli, LI Na, ZHENG Ying, ZHENG Xiaofeng, YU Xiaohui, ZHANG Jiucong. Research progress on the immunosuppressive mechanism of co-inhibitory receptor T cell immunoglobulin and immunoglobulin and tyrosine-based inhibitory motif domain[J]. Journal of Clinical Medicine in Practice, 2024, 28(5): 135-138. DOI: 10.7619/jcmp.20232354 |
The occurrence and development of malignant tumors are closely related to immune checkpoint receptors, and tumor cells can evade immune surveillance by activating the immune checkpoint pathway. T cell immunoglobulin and ITIM domain(TIGIT) is an inhibitory receptor expressed on lymphocytes, which can inhibit the function of natural killer cells(NK) and T cells through a variety of mechanisms, making tumor cells escape from the surveillance of the immune system. This article made a systematic review on the research progress of the immunosuppressive mechanism of TIGIT, and reviewed the research progress of the immunosuppressive mechanism of TIGIT.
[1] |
姚晓文, 王彩红, 王蓉, 等. 共抑制受体TIGIT在HIV慢性感染中的作用机制研究进展[J]. 热带医学杂志, 2023, 23(2): 274-276, 284. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYZ202302030.htm
|
[2] |
李欣, 王琳, 张德太. 骨代谢标志物在恶性肿瘤骨转移中的研究进展[J]. 检验医学与临床, 2023, 20(11): 1614-1617. https://www.cnki.com.cn/Article/CJFDTOTAL-JYYL202311026.htm
|
[3] |
宋杨美惠, 李梦婷, 兰晓莉, 等. 靶向成纤维细胞激活蛋白放射性药物在恶性肿瘤诊疗中的研究进展[J]. 药学进展, 2023, 47(5): 337-356. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202305003.htm
|
[4] |
袁涛, 钱美佳, 葛孚晶, 等. 调控蛋白质稳态的抗肿瘤新靶点和新策略研究进展[J]. 药学进展, 2022, 46(12): 898-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202212003.htm
|
[5] |
朱珠, 郑珩. 免疫检查点TIGIT在肿瘤中的研究进展[J]. 药学进展, 2023, 47(3): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202303005.htm
|
[6] |
HARJUNPÄÄH, GUILLEREY C. TIGIT as an emerging immune checkpoint[J]. Clin Exp Immunol, 2020, 200(2): 108-119. doi: 10.1111/cei.13407
|
[7] |
吴洁琼, 任敦强, 毕焕焕, 等. 免疫检查点TIGIT在肺癌免疫治疗中的研究进展[J]. 中国肺癌杂志, 2022, 25(11): 819-827. https://www.cnki.com.cn/Article/CJFDTOTAL-FAIZ202211007.htm
|
[8] |
GE Z H, PEPPELENBOSCH M P, SPRENGERS D, et al. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer[J]. Front Immunol, 2021, 12: 699895. doi: 10.3389/fimmu.2021.699895
|
[9] |
QIN S, XU L P, YI M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155. doi: 10.1186/s12943-019-1091-2
|
[10] |
方亮, 陈丽华, 金伯泉. 一种新的免疫抑制性受体TIGIT[J]. 细胞与分子免疫学杂志, 2012, 28(1): 108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFM201201033.htm
|
[11] |
ZHOU X M, LI W Q, WU Y H, et al. Intrinsic expression of immune checkpoint molecule TIGIT could help tumor growth in vivo by suppressing the function of NK and CD8+ T cells[J]. Front Immunol, 2018, 9: 2821. doi: 10.3389/fimmu.2018.02821
|
[12] |
DURAIVELAN K, SAMANTA D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188589. doi: 10.1016/j.bbcan.2021.188589
|
[13] |
RECHES A, OPHIR Y, STEIN N, et al. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity[J]. J Immunother Cancer, 2020, 8(1): e000266. doi: 10.1136/jitc-2019-000266
|
[14] |
赵凯凯. 通过阻断CD155/TIGIT信号通路提高放疗敏感性的研究[D]. 沈阳: 中国医科大学, 2021.
|
[15] |
BOLM L, PETRUCH N, SIVAKUMAR S, et al. Gene of the month: t-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT)[J]. J Clin Pathol, 2022, 75(4): 217-221. doi: 10.1136/jclinpath-2021-207789
|
[16] |
STENGEL K F, HARDEN-BOWLES K, YU X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5399-5404. doi: 10.1073/pnas.1120606109
|
[17] |
RUSSO E, RUNGE P, JAHROMI N H, et al. CD112 regulates angiogenesis and T cell entry into the spleen[J]. Cells, 2021, 10(1): 169. doi: 10.3390/cells10010169
|
[18] |
XU F X, SI X Q, WANG J, et al. Nectin-3 is a new biomarker that mediates the upregulation of MMP2 and MMP9 in ovarian cancer cells[J]. Biomedecine Pharmacother, 2019, 110: 139-144. doi: 10.1016/j.biopha.2018.11.020
|
[19] |
刘雅玲, 朱含梅, 王徐, 等. nectin-3蛋白在胰腺癌中的研究进展[J]. 沈阳医学院学报, 2021, 23(6): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYX202106011.htm
|
[20] |
CHALLITA-EID P M, SATPAYEV D, YANG P, et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models[J]. Cancer Res, 2016, 76(10): 3003-3013. doi: 10.1158/0008-5472.CAN-15-1313
|
[21] |
KUMAR S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors[J]. Immunology, 2018, 154(3): 383-393. doi: 10.1111/imm.12921
|
[22] |
王彩红, 高春, 于晓辉. 靶向TIGIT肿瘤免疫治疗的研究进展[J]. 武警医学, 2023, 34(5): 438-442. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYX202305020.htm
|
[23] |
KUZEVANOVA A, APANOVICH N, MANSORUNOV D, et al. The features of checkpoint receptor-ligand interaction in cancer and the therapeutic effectiveness of their inhibition[J]. Biomedicines, 2022, 10(9): 2081. doi: 10.3390/biomedicines10092081
|
[24] |
ANNESE T, TAMMA R, RIBATTI D. Update in TIGIT immune-checkpoint role in cancer[J]. Front Oncol, 2022, 12: 871085. doi: 10.3389/fonc.2022.871085
|
[25] |
LIU S, ZHANG H, LI M, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells[J]. Cell Death Differ, 2013, 20(3): 456-464. doi: 10.1038/cdd.2012.141
|
[26] |
JOLLER N, HAFLER J P, BRYNEDAL B, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions[J]. J Immunol, 2011, 186(3): 1338-1342. doi: 10.4049/jimmunol.1003081
|
[27] |
YU X, HARDEN K, GONZALEZ L C, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57. doi: 10.1038/ni.1674
|
[28] |
HASAN M M, NAIR S S, O'LEARY J G, et al. Implication of TIGIT+ human memory B cells in immune regulation[J]. Nat Commun, 2021, 12(1): 1534. doi: 10.1038/s41467-021-21413-y
|
[29] |
JOLLER N, LOZANO E, BURKETT P R, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014, 40(4): 569-581. doi: 10.1016/j.immuni.2014.02.012
|
[30] |
BANTA K L, XU X Z, CHITRE A S, et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses[J]. Immunity, 2022, 55(3): 512-526. doi: 10.1016/j.immuni.2022.02.005
|
[31] |
孙一彬, 姚晓文, 于晓辉, 等. 新型免疫检查点抑制剂T细胞免疫球蛋白和免疫受体酪氨酸抑制性基序结构域在抗肿瘤免疫治疗中的研究进展[J]. 中国热带医学, 2023, 23(2): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX202302017.htm
|
[32] |
JOHNSTON R J, COMPS-AGRAR L, HACKNEY J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function[J]. Cancer Cell, 2014, 26(6): 923-937. doi: 10.1016/j.ccell.2014.10.018
|
[33] |
GUR C, IBRAHIM Y, ISAACSON B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355. doi: 10.1016/j.immuni.2015.01.010
|
[34] |
THIBAUDIN M, LIMAGNE E, HAMPE L, et al. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer[J]. Cancer Immunol Immunother, 2022, 71(10): 2549-2563. doi: 10.1007/s00262-022-03182-9
|
[35] |
NIU J, MAURICE-DROR C, LEE D H, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer[J]. Ann Oncol, 2022, 33(2): 169-180. doi: 10.1016/j.annonc.2021.11.002
|
[36] |
METTU N B, ULAHANNAN S V, BENDELL J C, et al. A phase 1a/b open-label, dose-escalation study of etigilimab alone or in combination with nivolumab in patients with locally advanced or metastatic solid tumors[J]. Clin Cancer Res, 2022, 28(5): 882-892. doi: 10.1158/1078-0432.CCR-21-2780
|