LIU Mingyue, YANG Yumei, ZHENG Yanze. Network pharmacology of main pharmacological components of Chuanxiong-Danshen drug pair and its fingerprints[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 98-103. DOI: 10.7619/jcmp.20230668
Citation: LIU Mingyue, YANG Yumei, ZHENG Yanze. Network pharmacology of main pharmacological components of Chuanxiong-Danshen drug pair and its fingerprints[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 98-103. DOI: 10.7619/jcmp.20230668

Network pharmacology of main pharmacological components of Chuanxiong-Danshen drug pair and its fingerprints

More Information
  • Received Date: March 05, 2023
  • Revised Date: May 10, 2023
  • Available Online: September 03, 2023
  • Objective 

    To explore the active ingredients, targets and the mechanism of action of Chuanxiong-Danshen drug pair based on the network pharmacological research method.

    Methods 

    Taking Chuanxiong and Danshen as key words, their active ingredients, targets and corresponding disease data were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the multi-layer and multi-target network map was constructed to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis, so as to explore the mechanism of action of Chuanxiong-Danshen drug pair. Determination of active components of Chuanxiong-Danshen by high-performance liquid chromatography (HPLC) fingerprint.

    Results 

    The "drug-composition-target-disease" network included 2 kinds of drugs, 15 ingredients, 72 targets, and 187 diseases. Key targets included aldo-keto reductase family 1 member B1 (AKR1B1), carbonic anhydrase 2 (CA2), carbonic anhydrase 1 (CA1), acetaldehyde dehydrogenase 2 (ALDH2), prostaglandin G/H synthetase 1 (PTGS1), epidermal growth factor receptor (EGFR), matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 2 (MMP2), norepinephrine transporter (SLC6A2) and adenosine receptor A1 (ADORA1). It involved in pain, cardiovascular disease, Alzheimer's disease, prostate cancer and cerebral injury, etc. There were 223 GO enrichment items, including 165 biological processes, 30 molecular functions and 28 cell compositions. A total of 78 pathways were identified by KEGG enrichment analysis, including cancer pathway, neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, hepatitis B signaling pathway, etc. Six peaks of sitosterol, ligustrazine, tanshinol B, carnophenol one, luteolin and Perlolyrine were detected by HPLC fingerprint.

    Conclusion 

    In Chuanxiong-Danshen drug pair, active ingredients act on multiple targets, and has a therapeutic effect on pain, cardiovascular disease, Alzheimer's disease, prostate cancer, brain injury and other diseases.

  • [1]
    马晓晶, 杨健, 马桂荣, 等. 中药丹参的现代化研究进展[J]. 中国中药杂志, 2022, 47(19): 5131-5139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202219003.htm
    [2]
    王钰莹, 王川, 胡锐, 等. 基于网络药理学和体外实验探讨丹参-川芎药对治疗动脉粥样硬化的作用机制[J]. 中药药理与临床, 2022, 38(4): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202204012.htm
    [3]
    孙青. 不同配伍配比对丹参-川芎药对中10个有效成分含量的影响[J]. 中国药师, 2022, 25(1): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSG202201030.htm
    [4]
    张聪, 张雷. 基于中医传承辅助平台分析含丹参-川芎药对方剂的组方规律[J]. 中国民族民间医药, 2022, 31(19): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MZMJ202219023.htm
    [5]
    王春柳. 基于"心病及肾"研究慢性心力衰竭与肾纤维化的相关性及丹参-川芎注射液的干预作用[D]. 西安: 西北大学, 2022.
    [6]
    LI X, WEI S Z, NIU S Q, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis[J]. Comput Biol Med, 2022, 144: 105389. doi: 10.1016/j.compbiomed.2022.105389
    [7]
    JIN Y D, XIE Z R, LI S S, et al. Combined lipidomics and network pharmacology study of protective effects of Salvia miltiorrhiza against blood stasis syndrome[J]. Evid Based Complement Alternat Med, 2021, 2021: 5526778.
    [8]
    ZHOU W A, ZHANG H, WANG X, et al. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis[J]. Phytomedicine, 2022, 95: 153837. doi: 10.1016/j.phymed.2021.153837
    [9]
    杨娟, 郭丽娜, 王单单, 等. 基于网络药理学研究三草降压汤抗糖尿病合并高血压的分子机制[J]. 安徽医药, 2020, 24(3): 433-437, 638. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYY202003003.htm
    [10]
    尉雅洁, 刘明飞, 孙成宏, 等. 基于网络药理学和动物实验探究荆防颗粒对高尿酸血症的治疗作用及机制[J]. 中草药, 2023, 54(3): 808-816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202303014.htm
    [11]
    庞枫韬, 李克嵩, 张依, 等. 基于网络药理学和实验验证探讨路氏润燥汤治疗干燥综合征的分子机制[J]. 世界科学技术-中医药现代化, 2022, 24(9): 3406-3418. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202209016.htm
    [12]
    王云, 李琬, 彭蕴茹, 等. UPLC-Q-TOF-MS/MS技术结合网络药理学探讨中风瘀热方治疗缺血性脑卒中的作用机制[J]. 中药材, 2022, 45(12): 2904-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA202212021.htm
    [13]
    裴浩, 李海朋, 黄莹莹, 等. β-谷甾醇诱导口腔鳞状细胞癌SCC9细胞凋亡及机制研究[J]. 口腔医学研究, 2019, 35(1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KQYZ201901015.htm
    [14]
    陈颖. 丹参醇提物的抗菌作用研究[J]. 陕西农业科学, 2021, 67(10): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SNKX202110007.htm
    [15]
    王倩婷, 江砚, 徐良辉, 等. 松果菊苷通过调节AKR1B10/ERK信号传导抑制乳腺癌MCF-7细胞的恶性进程[J]. 中国中药杂志, 2023, 48(3): 744-751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202303020.htm
    [16]
    吴媛媛, 高元标, 冼笃标, 等. 比索洛尔预处理通过调控ERK1/2途径抑制缺氧/复氧诱导的心肌细胞凋亡和纤维化[J]. 现代药物与临床, 2022, 37(11): 2430-2436. https://www.cnki.com.cn/Article/CJFDTOTAL-GWZW202211003.htm
    [17]
    LEI M, CHEN N N, XU Y S, et al. Lithocarpus polystachyus (Sweet Tea) water extract promotes human hepatocytes HL7702 proliferation through activation of HGF/AKT/ERK signaling pathway[J]. Chin Herb Med, 2022, 14(4): 576-582.

Catalog

    Article views (159) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return