TENG Yongshi, DAI Shuhua, LIU Huiqin, QIN Lingzhi, XUE Hongfei, XU Jiajia, Li Wei. Construction of a differential diagnosis model of ischemic stroke between moyamoya disease and non-moyamoya disease based on clinical data[J]. Journal of Clinical Medicine in Practice, 2023, 27(8): 1-6, 12. DOI: 10.7619/jcmp.20230332
Citation: TENG Yongshi, DAI Shuhua, LIU Huiqin, QIN Lingzhi, XUE Hongfei, XU Jiajia, Li Wei. Construction of a differential diagnosis model of ischemic stroke between moyamoya disease and non-moyamoya disease based on clinical data[J]. Journal of Clinical Medicine in Practice, 2023, 27(8): 1-6, 12. DOI: 10.7619/jcmp.20230332

Construction of a differential diagnosis model of ischemic stroke between moyamoya disease and non-moyamoya disease based on clinical data

More Information
  • Received Date: February 08, 2023
  • Revised Date: April 18, 2023
  • Available Online: May 10, 2023
  • Objective 

    To establish a differential diagnosis model between moyamoya disease (MMD) and non-MMD ischemic stroke by screening clinically accessible variables.

    Methods 

    A total of 150 patients diagnosed with MMD ischemic stroke and 150 patients diagnosed with non-MMD ischemic stroke were included and divided into training group (210 cases) and validation group (90 cases) according to a ratio of 7 to 3. Logistic regression analysis, Lasso regression and support vector machine (SVM) were used to construct the diagnosis model; the optimal model was visualized with nomogram, and discriminant ability of the nomogram was tested in the training group and the validation group respectively.

    Results 

    Binary Logistic regression showed the largest C statistics in the training group and the verification group (0.87 and 0.88). Multivariate logistic regression analysis showed statistically significant differences (P < 0.05) in systolic blood pressure, total cholesterol (TC), albumin (ALB), free triiodothyranine (FT3), homocysteine (HCY) and age, and these six variables were included in the nomogram. Hosmer-Lemeshow test P values for the training group and the verification group were 0.28 and 0.19, respectively, and the calibration curve was well calibrated.The nomogram score < 168 was classified as a low risk of ischemic stroke in MMD, and the nomogram score ≥168 was classified as a high risk of ischemic stroke in MMD.

    Conclusion 

    The nomograms established in the study can be used to distinguish MMD from non-MMD ischemic stroke, and it has been verified that the model has good discriminative ability in both training group and verification group.

  • [1]
    刘芳, 张鑫, 杨惠清, 等. 烟雾病合并颅内动脉瘤患者介入治疗的护理[J]. 实用临床医药杂志, 2011, 15(16): 107-109. doi: 10.3969/j.issn.1672-2353.2011.16.049
    [2]
    烟雾病治疗中国专家共识编写组. 烟雾病治疗中国专家共识[J]. 国际脑血管病杂志, 2019, 27(9): 645-650.
    [3]
    HASUO K, MIHARA F, MATSUSHIMA T. MRI and MR angiography in moyamoya disease[J]. J Magn Reson Imaging, 1998, 8(4): 762-766. doi: 10.1002/jmri.1880080403
    [4]
    SUTTON C X Y, CARRAZANA E, MITCHELL C, et al. Identification of associations and distinguishing moyamoya disease from ischemic strokes of other etiologies: a retrospective case-control study[J]. Ann Med Surg (Lond), 2022, 78: 103771.
    [5]
    GRAF J, SCHWITALLA J C, ALBRECHT P, et al. Misdiagnoses and delay of diagnoses in Moyamoya angiopathy-a large Caucasian case series[J]. J Neurol, 2019, 266(5): 1153-1159. doi: 10.1007/s00415-019-09245-9
    [6]
    MOHAMMADI O, KRIEGER D, BUTT Ⅰ, et al. A case of delayed diagnosis of moyamoya disease after recurrent strokes[J]. Cureus, 2019, 11(12): e6446.
    [7]
    Research committee on the pathology and treatment of spontaneous occlusion of the circle of willis, Health labour sciences research grant for research on measures for infractable diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis)[J]. Neurol Med Chir (Tokyo), 2012, 52(5): 245-266. doi: 10.2176/nmc.52.245
    [8]
    王新德. 各类脑血管疾病诊断要点[J]. 中华神经科杂志, 1996, 29(6): 379-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLC201307036.htm
    [9]
    ACKER G, FEKONJA L, VAJKOCZY P. Surgical management of moyamoya disease[J]. Stroke, 2018, 49(2): 476-482. doi: 10.1161/STROKEAHA.117.018563
    [10]
    SHANG S L, ZHOU D, YA J Y, et al. Progress in moyamoya disease[J]. Neurosurg Rev, 2020, 43(2): 371-382. doi: 10.1007/s10143-018-0994-5
    [11]
    YA J Y, ZHOU D, DING J Y, et al. High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis[J]. Ann Transl Med, 2020, 8(4): 87. doi: 10.21037/atm.2019.12.140
    [12]
    KIM S J, HEO K G, SHIN H Y, et al. Association of thyroid autoantibodies with moyamoya-type cerebrovascular disease: a prospective study[J]. Stroke, 2010, 41(1): 173-176. doi: 10.1161/STROKEAHA.109.562264
    [13]
    LEI C, WU B, MA Z, et al. Association of moyamoya disease with thyroid autoantibodies and thyroid function: a case-control study and meta-analysis[J]. Eur J Neurol, 2014, 21(7): 996-1001. doi: 10.1111/ene.12425
    [14]
    张丽冉, 张俊玲. 烟雾病合并甲状腺功能亢进症10例临床分析[J]. 临床神经病学杂志, 2016, 29(5): 384-386. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSJ201605029.htm
    [15]
    UTKU U, ASIL T, CELIK Y, et al. Reversible MR angiographic findings in a patient with autoimmune Graves disease[J]. AJNR Am J Neuroradiol, 2004, 25(9): 1541-1543.
    [16]
    MALIK S, RUSSMAN A N, KATRAMADOS A M, et al. Moyamoya syndrome associated with Graves′ disease: a case report and review of the literature[J]. J Stroke Cerebrovasc Dis, 2011, 20(6): 528-536. doi: 10.1016/j.jstrokecerebrovasdis.2010.03.006
    [17]
    LI H, ZHANG Z S, DONG Z N, et al. Increased thyroid function and elevated thyroid autoantibodies in pediatric patients with moyamoya disease: a case-control study[J]. Stroke, 2011, 42(4): 1138-1139. doi: 10.1161/STROKEAHA.110.608471
    [18]
    GE P C, ZHANG Q, YE X, et al. Modifiable risk factors associated with moyamoya disease: a case-control study[J]. Stroke, 2020, 51(8): 2472-2479. doi: 10.1161/STROKEAHA.120.030027
    [19]
    LAI W K C, KAN M Y. Homocysteine-induced endothelial dysfunction[J]. Ann Nutr Metab, 2015, 67(1): 1-12.
    [20]
    MUJUMDAR V S, HAYDEN M R, TYAGI S C. Homocyst(e)ine induces calcium second messenger in vascular smooth muscle cells[J]. J Cell Physiol, 2000, 183(1): 28-36. doi: 10.1002/(SICI)1097-4652(200004)183:1<28::AID-JCP4>3.0.CO;2-O
    [21]
    TSAI J C, PERRELLA M A, YOSHIZUMI M, et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis[J]. Proc Natl Acad Sci USA, 1994, 91(14): 6369-6373. doi: 10.1073/pnas.91.14.6369
    [22]
    MASUDA J, OGATA J, YUTANI C. Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease[J]. Stroke, 1993, 24(12): 1960-1967.
    [23]
    LIU Y, SONG J H, HOU X H, et al. Elevated homocysteine as an independent risk for intracranial atherosclerotic stenosis[J]. Aging (Albany NY), 2019, 11(11): 3824-3831.
    [24]
    BANECKA-MAJKUTEWICZ Z, SAWUŁA W, KADZINSKI L, et al. Homocysteine, heat shock proteins, genistein and vitamins in ischemic stroke: pathogenic and therapeutic implications[J]. Acta Biochim Pol, 2012, 59(4): 495-499.
    [25]
    ZHANG Y, FU X, ZENG X F, et al. Hyperhomocysteinemia independently associated with adult moyamoya disease: hospital based study of 237 patients[J]. Turk Neurosurg, 2021, 31(2): 167-172.
    [26]
    DUAN L, WEI L, TIAN Y H, et al. Novel susceptibility loci for moyamoya disease revealed by a genome-wide association study[J]. Stroke, 2018, 49(1): 11-18.
    [27]
    GHAFFARI-RAFI A, GHAFFARI-RAFI S, LEON-ROJAS J. Socioeconomic and demographic disparities of moyamoya disease in the United States[J]. Clin Neurol Neurosurg, 2020, 192: 105719.
    [28]
    范利. 控制高血压、高血脂与预防脑卒中的关系[J]. 人民军医, 2004, 47(8): 479-481. https://www.cnki.com.cn/Article/CJFDTOTAL-RMJZ200408029.htm
    [29]
    JEON J S, AHN J H, MOON Y J, et al. Expression of cellular retinoic acid-binding protein-Ⅰ (CRABP-Ⅰ) in the cerebrospinal fluid of adult onset moyamoya disease and its association with clinical presentation and postoperative haemodynamic change[J]. J Neurol Neurosurg Psychiatry, 2014, 85(7): 726-731.
    [30]
    王燕. 低蛋白血症与复发性脑梗死的相关性研究[J]. 中西医结合心脑血管病杂志, 2019, 17(2): 282-284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY201902035.htm
    [31]
    中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国缺血性卒中和短暂性脑缺血发作二级预防指南2022[J]. 中华神经科杂志, 2022, 55(10): 1071-1110.
    [32]
    张欢. 中国人群总胆固醇水平与脑卒中及其亚型关系的前瞻性研究暨脂联素与心血管疾病的meta分析[D]. 北京: 北京协和医学院, 2012.
    [33]
    RAMADORI G, VAN DAMME J, RIEDER H, et al. Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha[J]. Eur J Immunol, 1988, 18(8): 1259-1264.
    [34]
    王虎清, 吴海琴, 张桂莲, 等. 烟雾病的临床特点分析[J]. 中国临床神经科学, 2012, 20(1): 30-36.
  • Cited by

    Periodical cited type(11)

    1. 孙琴,张雯,徐梦园,许素清,赵海河,靳敏丽. 肾四味合通窍活血汤对卒中后认知障碍患者血清神经递质及神经功能的影响. 实用临床医药杂志. 2025(01): 89-93 . 本站查看
    2. 杨英亮,王泉亮,林晓青,孙春燕. 同型半胱氨酸联合血清miR-210-3p对急性缺血性脑卒中后认知功能障碍的预测价值分析. 中华养生保健. 2025(02): 1-4 .
    3. 梁洁,尹学敬,郭丽. PE患者血清NfL、IFI16、TGF-β1水平变化及其预测妊娠结局价值. 中国计划生育学杂志. 2024(03): 665-668 .
    4. 尚凤伟,王瑞丽,李海珍,马振林. 血清AQP4、NFL、BAFF水平与癫痫患儿认知功能的相关性及其对认知功能损害的评估价值. 海南医学. 2024(10): 1426-1430 .
    5. 钱晓林,耿文丽,马莉莉,乔妍,李焕. 高压氧联合阿替普酶静脉溶栓对急性缺血性脑卒中患者脑组织血流灌注状态及血清IMA、NFL、Occludin水平的影响. 现代生物医学进展. 2024(16): 3075-3078 .
    6. 吴阳,屈小莹,杜楠,陈悦,樊红彬. 癫痫患者血清NFL、Hcy、Irisin与认知功能和治疗后发作控制的关系. 现代生物医学进展. 2024(16): 3181-3185 .
    7. 沈路. 超早期与早期神经介入栓塞术对老年破裂颅内动脉瘤患者预后的影响. 医学理论与实践. 2024(19): 3286-3289 .
    8. 王玉娟,陈奇,李新艺,孟宇. 血清脂联素、基质金属蛋白酶-9与急性脑卒中患者认知功能障碍的相关性分析. 实用医院临床杂志. 2024(05): 97-100 .
    9. 马志辉,刘静一. 天麻素联合多感官刺激对脑卒中后认知功能障碍患者的疗效分析. 实用临床医药杂志. 2024(19): 105-108+113 . 本站查看
    10. 余仕猛,雷超,李侃,谭倩,从林,马荣芳,柳青. 黄芪总苷调节蛋白激酶B-叉头框蛋白O1/3信号通路对大鼠脑缺血模型脑水肿的治疗作用研究. 中国临床神经科学. 2024(06): 620-628 .
    11. 龚世凤,张玉惠,王欣欣,谢洛洛. H型高血压合并急性缺血性脑卒中患者血清sLOX-1、Omentin-1、MMP-9水平检测的意义. 锦州医科大学学报. 2024(06): 37-41 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return