Citation: | DENG Longlian, SUN Haibin, Enri-Letu, WANG Tengqi. Research progresses of nomogram in predicting lymph node metastasis of colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(5): 143-148. DOI: 10.7619/jcmp.20223328 |
Lymph node metastasis (LNM) affects the choice of treatment and prognosis of patients with colorectal cancer (CRC), and how to predict lymph node status more accurately is a major challenge in the field of CRC. As a visual prediction model, nomogram has been widely studied in the field of lymph node metastasis of colorectal cancer (CRC-LNM) prediction in recent years. Nomogram based on clinical features, radiology, genomic or transcriptomic features is significantly better than traditional TNM staging in identifying LNM preoperatively, which provides a basis for healthcare professionals to more accurately identify LNM high-risk groups and develop personalized treatment strategies. Non-invasive blood tests can obtain non-invasive, convenient, and inexpensive preoperative acquisition of circulating tumor biomarkers, and the construction of nomograms and prediction of LNM is promising. The interdisciplinary study combining clinical, radiology, and circulating markers can help further improve the predictive performance of nomograms and deserves further investigation.
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[3] |
中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J]. 中国实用外科杂志, 2020, 40(6): 601-625. doi: 10.19538/j.cjps.issn1005-2208.2020.06.01
|
[4] |
DE GOOYER J M, VERSTEGEN M G,
|
[5] |
YANG Z F, LI Y, QIN X S, et al. Development and validation of a prognostic nomogram for colorectal cancer patients with synchronous peritoneal metastasis[J]. Front Oncol, 2021, 11: 615321. doi: 10.3389/fonc.2021.615321
|
[6] |
XIONG Y F, YOU W X, HOU M, et al. Nomogram integrating genomics with clinicopathologic features improves prognosis prediction for colorectal cancer[J]. Mol Cancer Res, 2018, 16(9): 1373-1384. doi: 10.1158/1541-7786.MCR-18-0063
|
[7] |
刘书霞, 张磊, 石远凯, 等. 非转移性结直肠癌患者术后预后影响因素分析及列线图预测模型的构建[J]. 中华肿瘤杂志, 2022, 44(2): 167-172.
|
[8] |
HU D Y, CAO B, LI S H, et al. Incidence, risk factors, and a predictive model for lymph node metastasis of submucosal (T1) colon cancer: a population-based study[J]. J Dig Dis, 2019, 20(6): 288-293. doi: 10.1111/1751-2980.12754
|
[9] |
OH J R, PARK B, LEE S, et al. Nomogram development and external validation for predicting the risk of lymph node metastasis in T1 colorectal cancer[J]. Cancer Res Treat, 2019, 51(4): 1275-1284. doi: 10.4143/crt.2018.569
|
[10] |
XU Y S, CHEN Y, LONG C Y, et al. Preoperative predictors of lymph node metastasis in colon cancer[J]. Front Oncol, 2021, 11: 667477. doi: 10.3389/fonc.2021.667477
|
[11] |
WADA Y M, SHIMADA M, MURANO T, et al. A liquid biopsy assay for noninvasive identification of lymph node metastases in T1 colorectal cancer[J]. Gastroenterology, 2021, 161(1): 151-162, e1. doi: 10.1053/j.gastro.2021.03.062
|
[12] |
武杰, 李岚, 张惠博, 等. 结肠癌淋巴结转移的风险基因及列线图预测模型的构建[J]. 肿瘤防治研究, 2020, 47(12): 947-952. doi: 10.3971/j.issn.1000-8578.2020.20.0234
|
[13] |
HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18): 2157-2164. doi: 10.1200/JCO.2015.65.9128
|
[14] |
COLLINS G S, REITSMA J B, ALTMAN D G, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. BMJ, 2015, 350: g7594. doi: 10.1136/bmj.g7594
|
[15] |
RILEY R D, ENSOR J, SNELL K I E, et al. Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020, 368: m441.
|
[16] |
ZHOU Z R, WANG W W, LI Y, et al. In-depth mining of clinical data: the construction of clinical prediction model with R[J]. Ann Transl Med, 2019, 7(23): 796. doi: 10.21037/atm.2019.08.63
|
[17] |
郭源, 李云龙, 张龙, 等. T3、T4期结直肠癌淋巴结转移危险因素分析[J]. 肿瘤研究与临床, 2020, 32(3): 161-165. doi: 10.3760/cma.j.cn115355-20190405-00125
|
[18] |
庄奥博, 朱德祥, 许平平, 等. T1期结直肠癌淋巴结转移的危险因素分析及其列线图预测模型的应用价值[J]. 中华消化外科杂志, 2021, 20(3): 323-330. doi: 10.3760/cma.j.cn115610-20210224-00096
|
[19] |
德吉, 秦金玉, 王瑾, 等. 早期结直肠癌淋巴结转移的危险因素分析及内镜切除指征的探讨[J]. 中华消化内镜杂志, 2015, 32(6): 367-370. doi: 10.3760/cma.j.issn.1007-5232.2015.06.003
|
[20] |
MUTO T, OYA M. Recent advances in diagnosis and treatment of colorectal T1 carcinoma[J]. Dis Colon Rectum, 2003, 46(10 Suppl): S89-S93.
|
[21] |
NASCIMBENI R, BURGART L J, NIVATVONGS S, et al. Risk of lymph node metastasis in T1 carcinoma of the colon and rectum[J]. Dis Colon Rectum, 2002, 45(2): 200-206. doi: 10.1007/s10350-004-6147-7
|
[22] |
LIU Z T, HUANG C, TIAN H K, et al. Establishment of a dynamic nomogram for predicting the risk of lymph node metastasis in T1 stage colorectal cancer[J]. Front Surg, 2022, 9: 845666. doi: 10.3389/fsurg.2022.845666
|
[23] |
FU J P, TU M J, ZHANG Y, et al. A model of multiple tumor marker for lymph node metastasis assessment in colorectal cancer: a retrospective study[J]. PeerJ, 2022, 10: e13196. doi: 10.7717/peerj.13196
|
[24] |
LONG C Y, FENG M Y, WANG S J, et al. A clinicopathological feature-based nomogram for predicting the likelihood of D3 lymph node metastasis in right-sided colon cancer patients[J]. Dis Colon Rectum, 2023, 66(1): 75-86. doi: 10.1097/DCR.0000000000002160
|
[25] |
吕智豪, 刘华熙, 郭昌, 等. 联合检测肿瘤标志物与炎症指标对结直肠癌的诊断价值[J]. 中国现代医学杂志, 2020, 30(1): 56-62. doi: 10.3969/j.issn.1005-8982.2020.01.011
|
[26] |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. doi: 10.1148/radiol.2015151169
|
[27] |
XU X, ZHANG H L, LIU Q P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. doi: 10.1016/j.jhep.2019.02.023
|
[28] |
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. doi: 10.2967/jnumed.118.222893
|
[29] |
LI M L, ZHANG J, DAN Y B, et al. A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Transl Med, 2020, 18(1): 46. doi: 10.1186/s12967-020-02215-0
|
[30] |
CHENG Y, YU Q, MENG W Y, et al. Clinico-radiologic nomogram using multiphase CT to predict lymph node metastasis in colon cancer[J]. Mol Imaging Biol, 2022, 24(5): 798-806. doi: 10.1007/s11307-022-01730-4
|
[31] |
ZHOU Y, YANG R, WANG Y, et al. Histogram analysis of diffusion-weighted magnetic resonance imaging as a biomarker to predict LNM in T3 stage rectal carcinoma[J]. BMC Med Imaging, 2021, 21(1): 176. doi: 10.1186/s12880-021-00706-0
|
[32] |
CHEN L D, LIANG J Y, WU H, et al. Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics[J]. Life Sci, 2018, 208: 55-63. doi: 10.1016/j.lfs.2018.07.007
|
[33] |
HE J H, WANG Q S, ZHANG Y, et al. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on (18)F-FDG PET/CT and machine learning[J]. Ann Nucl Med, 2021, 35(5): 617-627. doi: 10.1007/s12149-021-01605-8
|
[34] |
OZAWA T, KANDIMALLA R, GAO F, et al. A microRNA signature associated with metastasis of T1 colorectal cancers to lymph nodes[J]. Gastroenterology, 2018, 154(4): 844-848, e7. doi: 10.1053/j.gastro.2017.11.275
|
[35] |
KANDIMALLA R, OZAWA T, GAO F, et al. Gene expression signature in surgical tissues and endoscopic biopsies identifies high-risk T1 colorectal cancers[J]. Gastroenterology, 2019, 156(8): 2338-2341, e3. doi: 10.1053/j.gastro.2019.02.027
|
[36] |
QU A L, YANG Y M, ZHANG X, et al. Development of a preoperative prediction nomogram for lymph node metastasis in colorectal cancer based on a novel serum miRNA signature and CT scans[J]. EBioMedicine, 2018, 37: 125-133. doi: 10.1016/j.ebiom.2018.09.052
|