Citation: | YOU Jing, HE Miao, ZHOU Feng, LI Weirong. Research progress on roles of blood biomarkers in etiological classification of ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2022, 26(6): 118-122. DOI: 10.7619/jcmp.20214524 |
[1] |
WANG Y J, LI Z X, GU H Q, et al. China stroke statistics 2019: a report from the national center for healthcare quality management in neurological diseases, China national clinical research center for neurological diseases, the Chinese stroke association, national center for chronic and non-communicable disease control and prevention, Chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations[J]. Stroke Vasc Neurol, 2020, 5(3): 211-239. doi: 10.1136/svn-2020-000457
|
[2] |
KIM S J, MOON G J, BANG O Y. Biomarkers for stroke[J]. J Stroke, 2013, 15(1): 27-37. doi: 10.5853/jos.2013.15.1.27
|
[3] |
MAKRIS K, HALIASSOS A, CHONDROGIANNI M, et al. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research[J]. Crit Rev Clin Lab Sci, 2018, 55(5): 294-328. doi: 10.1080/10408363.2018.1461190
|
[4] |
PICCARDI B, GIRALT D, BUSTAMANTE A, et al. Blood markers of inflammation and endothelial dysfunction in cardioembolic stroke: systematic review and meta-analysis[J]. Biomarkers, 2017, 22(3/4): 200-209.
|
[5] |
TUTTOLOMONDO A, DI RAIMONDO D, PECORARO R, et al. Inflammation in ischemic stroke subtypes[J]. Curr Pharm Des, 2012, 18(28): 4289-4310. doi: 10.2174/138161212802481200
|
[6] |
ZENG L L, HE X S, LIU J R, et al. Differences of circulating inflammatory markers between large and small vessel disease in patients with acute ischemic stroke[J]. Int J Med Sci, 2013, 10(10): 1399-1405. doi: 10.7150/ijms.6652
|
[7] |
SUWANWELA N C, CHUTINET A, PHANTHUMCHINDA K. Inflammatory markers and conventional atherosclerotic risk factors in acute ischemic stroke: comparative study between vascular disease subtypes[J]. J Med Assoc Thai, 2006, 89(12): 2021-2027.
|
[8] |
LIU L B, LI M, ZHUO W Y, et al. The role of hs-CRP, D-dimer and fibrinogen in differentiating etiological subtypes of ischemic stroke[J]. PLoS One, 2015, 10(2): e0118301. doi: 10.1371/journal.pone.0118301
|
[9] |
PELLEGRINO P L, BRUNETTI N D, DE GENNARO L, et al. Inflammatory activation in an unselected population of subjects with atrial fibrillation: links with structural heart disease, atrial remodeling and recent onset[J]. Intern Emerg Med, 2013, 8(2): 123-128. doi: 10.1007/s11739-011-0557-z
|
[10] |
LOK U, GULACTI U. The predictive effect of the neutrophil-to-lymphocyte ratio (NLR) on the mortality of acute ischemic stroke and its subtypes: a retrospective cross-sectional study[J]. Eurasian J Emerg Med, 2016, 15(2): 69-72. doi: 10.5152/eajem.2016.39974
|
[11] |
TOKGOZ S, KAYRAK M, AKPINAR Z, et al. Neutrophil lymphocyte ratio as a predictor of stroke[J]. J Stroke Cerebrovasc Dis, 2013, 22(7): 1169-1174. doi: 10.1016/j.jstrokecerebrovasdis.2013.01.011
|
[12] |
DOMAÇ F, ÜLKER M, KARACI R, et al. The relation between neutrophil-lymphocyte ratio and etiologic subtypes in acute ischaemic stroke[J]. Haydarpaşa Numune Med J, 2021, 61(2): 145.
|
[13] |
QUN S, HU F Y, WANG G P, et al. Serum beta2-microglobulin levels are highly associated with the risk of acute ischemic stroke[J]. Sci Rep, 2019, 9(1): 6883. doi: 10.1038/s41598-019-43370-9
|
[14] |
CUI N, HU M, KHALIL R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
|
[15] |
ALHAZMI H, BANI-SADR A, BOCHATON T, et al. Large vessel cardioembolic stroke and embolic stroke of undetermined source share a common profile of matrix metalloproteinase-9 level and susceptibility vessel sign length[J]. Eur J Neurol, 2021, 28(6): 1977-1983. doi: 10.1111/ene.14806
|
[16] |
CÁRCEL-MÁRQUEZ J, CULLELL N, MUIÑO E, et al. Causal effect of MMP-1 (matrix metalloproteinase-1), MMP-8, and MMP-12 levels on ischemic stroke: a Mendelian randomization study[J]. Stroke, 2021, 52(7): e316-e320.
|
[17] |
DELGADO P, CHACÓN P, PENALBA A, et al. Lipoprotein-associated phospholipase A(2) activity is associated with large-artery atherosclerotic etiology and recurrent stroke in TIA patients[J]. Cerebrovasc Dis, 2012, 33(2): 150-158. doi: 10.1159/000334193
|
[18] |
HU G F, LIU D P, TONG H Y, et al. Lipoprotein-associated phospholipase A2 activity and mass as independent risk factor of stroke: a meta-analysis[J]. Biomed Res Int, 2019, 2019: 8642784.
|
[19] |
WISEMAN S, MARLBOROUGH F, DOUBAL F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis[J]. Cerebrovasc Dis, 2014, 37(1): 64-75. doi: 10.1159/000356789
|
[20] |
ZI W J, SHUAI J. Plasma D-dimer levels are associated with stroke subtypes and infarction volume in patients with acute ischemic stroke[J]. PLoS One, 2014, 9(1): e86465. doi: 10.1371/journal.pone.0086465
|
[21] |
KIM Y D, SONG D, NAM H S, et al. D-dimer for prediction of long-term outcome in cryptogenic stroke patients with patent foramen ovale[J]. Thromb Haemost, 2015, 114(3): 614-622.
|
[22] |
KIM S J, PARK J H, LEE M J, et al. Clues to occult cancer in patients with ischemic stroke[J]. PLoS One, 2012, 7(9): e44959. doi: 10.1371/journal.pone.0044959
|
[23] |
YUAN B B, LUO G G, GAO J X, et al. Variance of serum lipid levels in stroke subtypes[J]. Clin Lab, 2015, 61(10): 1509-1514.
|
[24] |
KIM B S, JUNG H S, BANG O Y, et al. Elevated serum lipoprotein(a) as a potential predictor for combined intracranial and extracranial artery Stenosis in patients with ischemic stroke[J]. Atherosclerosis, 2010, 212(2): 682-688. doi: 10.1016/j.atherosclerosis.2010.07.007
|
[25] |
HINDY G, ENGSTRÖM G, LARSSON S C, et al. Role of blood lipids in the development of ischemic stroke and its subtypes: a Mendelian randomization study[J]. Stroke, 2018, 49(4): 820-827. doi: 10.1161/STROKEAHA.117.019653
|
[26] |
KAYRAN Y, YAYLA V, ÇABALAR M, et al. LDL subclasses in ischemic stroke: a risk factor[J]. Noro Psikiyatr Ars, 2019, 56(1): 13-17.
|
[27] |
LLOMBART V, ANTOLIN-FONTES A, BUSTAMANTE A, et al. B-type natriuretic peptides help in cardioembolic stroke diagnosis: pooled data meta-analysis[J]. Stroke, 2015, 46(5): 1187-1195. doi: 10.1161/STROKEAHA.114.008311
|
[28] |
KAWASE S, KOWA H, SUTO Y, et al. Plasma brain natriuretic peptide is a marker of prognostic functional outcome in non-cardioembolic infarction[J]. J Stroke Cerebrovasc Dis, 2015, 24(10): 2285-2290. doi: 10.1016/j.jstrokecerebrovasdis.2015.06.006
|
[29] |
WU Z X, ZHAO M M, HE M F, et al. Validation of the use of B-type natriuretic peptide point-of-care test platform in preliminary recognition of cardioembolic stroke patients in the ED[J]. Am J Emerg Med, 2015, 33(4): 521-526. doi: 10.1016/j.ajem.2015.01.013
|
[30] |
BAI J X, SUN H C, XIE L, et al. Detection of cardioembolic stroke with B-type natriuretic peptide or N-terminal pro-BNP: a comparative diagnostic meta-analysis[J]. Int J Neurosci, 2018, 128(11): 1100-1108. doi: 10.1080/00207454.2017.1408612
|
[31] |
ZHU Z, TANG W J, GE L, et al. The value of plasma fibrillin-1 level in patients with spontaneous cerebral artery dissection[J]. Neurology, 2018, 90(9): e732-e737. doi: 10.1212/WNL.0000000000005027
|
[32] |
RÜCKER V, HEUSCHMANN P U, O'FLAHERTY M, et al. Twenty-year time trends in long-term case-fatality and recurrence rates after ischemic stroke stratified by etiology[J]. Stroke, 2020, 51(9): 2778-2785. doi: 10.1161/STROKEAHA.120.029972
|