Citation: | TAO Mingyang, XU Yixing, LIANG Yue, ZHU Siyuan, YAN Xuebing. Research progress of metabolites of intestinal flora in tumors[J]. Journal of Clinical Medicine in Practice, 2022, 26(2): 137-141. DOI: 10.7619/jcmp.20213955 |
[1] |
常宇骁, 杨瑞馥, 毕玉晶. 肠道菌群与结直肠癌关系及其研究技术进展[J]. 肿瘤代谢与营养电子杂志, 2021, 8(2): 211-216.
|
[2] |
周熙祥, 伍志伟, 张录梅, 等. 肠道菌群与肝癌的研究进展[J]. 中国微生态学杂志, 2021, 33(8): 971-975.
|
[3] |
韦丽娅, 郭智. 肠道微生物群与血液肿瘤[J]. 国际肿瘤学杂志, 2021, 48(7): 445-448. doi: 10.3760/cma.j.cn371439-20201019-00086
|
[4] |
ZHU R Q, LANG T Q, YAN W L, et al. Gut microbiota: influence on carcinogenesis and modulation strategies by drug delivery systems to improve cancer therapy[J]. Adv Sci (Weinh), 2021, 8(10): 2003542. doi: 10.1002/advs.202003542
|
[5] |
WU X Q, WU Y B, HE L M, et al. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer[J]. J Cancer, 2018, 9(14): 2510-2517. doi: 10.7150/jca.25324
|
[6] |
GUO S, CHEN J, CHEN F, et al. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16[J]. Gut, 2020, 70(8): gutjnl-2020-321187. http://www.researchgate.net/publication/347792022_Exosomes_derived_from_Fusobacterium_nucleatum_-infected_colorectal_cancer_cells_facilitate_tumour_metastasis_by_selectively_carrying_miR-124692b-3p27a-3p_and_CXCL16
|
[7] |
KONG C, YAN X B, ZHU Y F, et al. Fusobacterium nucleatum promotes the development of colorectal cancer by activating a cytochrome P450/epoxyoctadecenoic acid axis via TLR4/Keap1/NRF2 signaling[J]. Cancer Res, 2021, 81(17): 4485-4498. doi: 10.1158/0008-5472.CAN-21-0453
|
[8] |
PARHI L, ALON-MAIMON T, SOL A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nat Commun, 2020, 11(1): 3259. doi: 10.1038/s41467-020-16967-2
|
[9] |
MATSUSHITA M, FUJITA K, MOTOOKA D, et al. The gut microbiota associated with high-Gleason prostate cancer[J]. Cancer Sci, 2021, 112(8): 3125-3135. doi: 10.1111/cas.14998
|
[10] |
SIMS T T, EL ALAM M B, KARPINETS T V, et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation[J]. Commun Biol, 2021, 4(1): 237. doi: 10.1038/s42003-021-01741-x
|
[11] |
KONG C, GAO R Y, YAN X B, et al. Alterations in intestinal microbiota of colorectal cancer patients receiving radical surgery combined with adjuvant CapeOx therapy[J]. Sci China Life Sci, 2019, 62(9): 1178-1193. doi: 10.1007/s11427-018-9456-x
|
[12] |
杨梦雪, 严雪冰, 王颖, 等. 肠道菌群在肿瘤免疫治疗中的作用研究进展[J]. 生命的化学, 2020, 40(8): 1353-1357.
|
[13] |
MA J, ZHU W, LIU B. Role of gut microbiome in the outcome of cancer immunotherapy[J]. Int J Cancer, 2021: 2021Feb18. doi: 10.1002/ijc.33524
|
[14] |
CHANG A E, GOLOB J L, SCHMIDT T M, et al. Targeting the gut microbiome to mitigate immunotherapy-induced colitis in cancer[J]. Trends Cancer, 2021, 7(7): 583-593. doi: 10.1016/j.trecan.2021.02.005
|
[15] |
REN Z G, JIANG J W, XIE H Y, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China[J]. Oncotarget, 2017, 8(56): 95176-95191. doi: 10.18632/oncotarget.18820
|
[16] |
ZHENG R P, WANG G Q, PANG Z Q, et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma[J]. Cancer Med, 2020, 9(12): 4232-4250. doi: 10.1002/cam4.3045
|
[17] |
LIU X, CHENG Y W, SHAO L, et al. Alterations of the predominant fecal microbiota and disruption of the gut mucosal barrier in patients with early-stage colorectal cancer[J]. Biomed Res Int, 2020, 2020: 2948282.
|
[18] |
YANG Y B, LI L L, XU C J, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut, 2020, 70(8): 1495-1506. http://www.ncbi.nlm.nih.gov/pubmed/33122176/
|
[19] |
LI R, ZHOU R, WANG H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer[J]. Cell Death Differ, 2019, 26(11): 2447-2463. doi: 10.1038/s41418-019-0312-y
|
[20] |
GUZIOR D V, QUINN R A. Review: microbial transformations of human bile acids[J]. Microbiome, 2021, 9(1): 140. doi: 10.1186/s40168-021-01101-1
|
[21] |
郭磊, 朱海杭, 周步良. 结肠直肠癌与胆汁酸代谢、肠道菌群分布水平的相关性研究[J]. 实用临床医药杂志, 2019, 23(2): 95-96, 99. doi: 10.7619/jcmp.201902026
|
[22] |
LIU L, YANG M, DONG W X, et al. Gut dysbiosis and abnormal bile acid metabolism in colitis-associated cancer[J]. Gastroenterol Res Pract, 2021, 2021: 6645970.
|
[23] |
SUN L L, CAI J, GONZALEZ F J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 335-347. doi: 10.1038/s41575-020-00404-2
|
[24] |
WU L W, FENG J, LI J J, et al. The gut microbiome-bile acid axis in hepatocarcinogenesis[J]. Biomed Pharmacother, 2021, 133: 111036. doi: 10.1016/j.biopha.2020.111036
|
[25] |
OCVIRK S, O'KEEFE S J D. Dietary fat, bile acid metabolism and colorectal cancer[J]. Semin Cancer Biol, 2021, 73: 347-355. doi: 10.1016/j.semcancer.2020.10.003
|
[26] |
MOSKOWITZ J E, DORAN A G, LEI Z T, et al. Integration of genomics, metagenomics, and metabolomics to identify interplay between susceptibility alleles and microbiota in adenoma initiation[J]. BMC Cancer, 2020, 20(1): 600. doi: 10.1186/s12885-020-07007-9
|
[27] |
HUANG Y W, LIN C W, PAN P, et al. Dysregulated free fatty acid receptor 2 exacerbates colonic adenoma formation in apc Min/+ mice: relation to metabolism and gut microbiota composition[J]. J Cancer Prev, 2021, 26(1): 32-40. doi: 10.15430/JCP.2021.26.1.32
|
[28] |
KAU017AMIERCZAK-SIEDLECKA K, DACA A, FIC M, et al. Therapeutic methods of gut microbiota modification in colorectal cancer management-fecal microbiota transplantation, prebiotics, probiotics, and synbiotics[J]. Gut Microbes, 2020, 11(6): 1518-1530. doi: 10.1080/19490976.2020.1764309
|
[29] |
FANG Y K, YAN C, ZHAO Q, et al. The roles of microbial products in the development of colorectal cancer: a review[J]. Bioengineered, 2021, 12(1): 720-735. doi: 10.1080/21655979.2021.1889109
|
[30] |
FAN X Y, JIN Y L, CHEN G, et al. Gut microbiota dysbiosis drives the development of colorectal cancer[J]. Digestion, 2021, 102(4): 508-515. doi: 10.1159/000508328
|
[31] |
FARIS P, FERULLI F, VISMARA M, et al. Hydrogen sulfide-evoked intracellular Ca2+ signals in primary cultures of metastatic colorectal cancer cells[J]. Cancers, 2020, 12(11): 3338. doi: 10.3390/cancers12113338
|
[32] |
SILVER D J, ROVERSI G A, BITHI N, et al. Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma[J]. J Clin Invest, 2021, 131(17): e138276. doi: 10.1172/JCI138276
|
[33] |
HU X, XIAO Y, SUN J N, et al. New possible silver lining for pancreatic cancer therapy: hydrogen sulfide and its donors[J]. Acta Pharm Sin B, 2021, 11(5): 1148-1157. doi: 10.1016/j.apsb.2020.10.019
|
[34] |
LI M, LIU Y, DENG Y Y, et al. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer (Review)[J]. Oncol Rep, 2021, 45(5): 68. doi: 10.3892/or.2021.8019
|
[35] |
MIRZAEI R, AFAGHI A, BABAKHANI S, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention[J]. Biomed Pharmacother, 2021, 139: 111619. doi: 10.1016/j.biopha.2021.111619
|
[36] |
HAN S W, DA M, QI Q, et al. Protective effect of the "food-microorganism-SCFAs" axis on colorectal cancer: from basic research to practical application[J]. J Cancer Res Clin Oncol, 2019, 145(9): 2169-2197. doi: 10.1007/s00432-019-02997-x
|
[37] |
WANG G, YU Y, WANG Y Z, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049. doi: 10.1002/jcp.28436
|
[38] |
THIRUVENGADAM M, SUBRAMANIAN U, VENKIDASAMY B, et al. Emerging role of nutritional short-chain fatty acids (SCFAs) against cancer via modulation of hematopoiesis[J]. Crit Rev Food Sci Nutr, 2021: 1-18. http://www.ncbi.nlm.nih.gov/pubmed/34319824
|
[39] |
KIM K, KWON O, RYU T Y, et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer[J]. Mol Med Rep, 2019, 20(2): 1569-1574. http://www.ingentaconnect.com/content/sp/mmr/2019/00000020/00000002/art00076
|
[40] |
CHEN L L, ZHOU X Y, WANG Y W, et al. Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice[J]. Mol Nutr Food Res, 2021, 65(15): e2100096. doi: 10.1002/mnfr.202100096
|
[41] |
NAKKARACH A, FOO H L, SONG A A L, et al. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota[J]. Microb Cell Fact, 2021, 20(1): 36. doi: 10.1186/s12934-020-01477-z
|
[42] |
MATSUSHITA M, FUJITA K, HAYASHI T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling[J]. Cancer Res, 2021, 81(15): 4014-4026. doi: 10.1158/0008-5472.CAN-20-4090
|
[43] |
ZHANG S L, MAO Y Q, ZHANG Z Y, et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer[J]. Theranostics, 2021, 11(9): 4155-4170. doi: 10.7150/thno.54476
|
[44] |
MALCZEWSKI A B, NAVARRO S, COWARD J I, et al. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e001383. doi: 10.1136/jitc-2020-001383
|
[45] |
COUTZAC C, JOUNIAUX J M, PACI A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer[J]. Nat Commun, 2020, 11(1): 2168. doi: 10.1038/s41467-020-16079-x
|
1. |
孙琴,张雯,徐梦园,许素清,赵海河,靳敏丽. 肾四味合通窍活血汤对卒中后认知障碍患者血清神经递质及神经功能的影响. 实用临床医药杂志. 2025(01): 89-93 .
![]() | |
2. |
杨英亮,王泉亮,林晓青,孙春燕. 同型半胱氨酸联合血清miR-210-3p对急性缺血性脑卒中后认知功能障碍的预测价值分析. 中华养生保健. 2025(02): 1-4 .
![]() | |
3. |
梁洁,尹学敬,郭丽. PE患者血清NfL、IFI16、TGF-β1水平变化及其预测妊娠结局价值. 中国计划生育学杂志. 2024(03): 665-668 .
![]() | |
4. |
尚凤伟,王瑞丽,李海珍,马振林. 血清AQP4、NFL、BAFF水平与癫痫患儿认知功能的相关性及其对认知功能损害的评估价值. 海南医学. 2024(10): 1426-1430 .
![]() | |
5. |
钱晓林,耿文丽,马莉莉,乔妍,李焕. 高压氧联合阿替普酶静脉溶栓对急性缺血性脑卒中患者脑组织血流灌注状态及血清IMA、NFL、Occludin水平的影响. 现代生物医学进展. 2024(16): 3075-3078 .
![]() | |
6. |
吴阳,屈小莹,杜楠,陈悦,樊红彬. 癫痫患者血清NFL、Hcy、Irisin与认知功能和治疗后发作控制的关系. 现代生物医学进展. 2024(16): 3181-3185 .
![]() | |
7. |
沈路. 超早期与早期神经介入栓塞术对老年破裂颅内动脉瘤患者预后的影响. 医学理论与实践. 2024(19): 3286-3289 .
![]() | |
8. |
王玉娟,陈奇,李新艺,孟宇. 血清脂联素、基质金属蛋白酶-9与急性脑卒中患者认知功能障碍的相关性分析. 实用医院临床杂志. 2024(05): 97-100 .
![]() | |
9. |
马志辉,刘静一. 天麻素联合多感官刺激对脑卒中后认知功能障碍患者的疗效分析. 实用临床医药杂志. 2024(19): 105-108+113 .
![]() | |
10. |
余仕猛,雷超,李侃,谭倩,从林,马荣芳,柳青. 黄芪总苷调节蛋白激酶B-叉头框蛋白O1/3信号通路对大鼠脑缺血模型脑水肿的治疗作用研究. 中国临床神经科学. 2024(06): 620-628 .
![]() | |
11. |
龚世凤,张玉惠,王欣欣,谢洛洛. H型高血压合并急性缺血性脑卒中患者血清sLOX-1、Omentin-1、MMP-9水平检测的意义. 锦州医科大学学报. 2024(06): 37-41 .
![]() |