Citation: | LI Yanian, HE Shenghu. Research progress of triglyceride glucose-body mass index[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 130-133. DOI: 10.7619/jcmp.20213765 |
[1] |
《中国心血管健康与疾病报告2020》编写组. 《中国心血管健康与疾病报告2020》概述[J]. 中国心血管病研究, 2021, 19(7): 582-590. doi: 10.3969/j.issn.1672-5301.2021.07.002
|
[2] |
WANG Z W, CHEN Z, ZHANG L F, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. doi: 10.1161/CIRCULATIONAHA.117.032380
|
[3] |
WANG L M, ZHOU B, ZHAO Z P, et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004-18[J]. Lancet, 2021, 398(10294): 53-63. doi: 10.1016/S0140-6736(21)00798-4
|
[4] |
XIA C, LI R, ZHANG S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals[J]. Eur J Clin Nutr, 2012, 66(9): 1035-1038. doi: 10.1038/ejcn.2012.83
|
[5] |
CHENG Y H, TSAO Y C, TZENG I S, et al. Body mass index and waist circumference are better predictors of insulin resistance than total body fat percentage in middle-aged and elderly Taiwanese[J]. Medicine (Baltimore), 2017, 96(39): e8126. doi: 10.1097/MD.0000000000008126
|
[6] |
GAST K B, TJEERDEMA N, STIJNEN T, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis[J]. PLoS One, 2012, 7(12): e52036. doi: 10.1371/journal.pone.0052036
|
[7] |
ER L K, WU S, CHOU H H, et al. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals[J]. PLoS One, 2016, 11(3): e0149731. doi: 10.1371/journal.pone.0149731
|
[8] |
LILLIOJA S, MOTT D M, SPRAUL M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians[J]. N Engl J Med, 1993, 329(27): 1988-1992. doi: 10.1056/NEJM199312303292703
|
[9] |
MINH H V, TIEN H A, SINH C T, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension[J]. J Clin Hypertens (Greenwich), 2021, 23(3): 529-537. doi: 10.1111/jch.14155
|
[10] |
SÁNCHEZ-GARCÍA A, RODRÍGUEZ-GUTIÉRREZ R, MANCILLAS-ADAME L, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review[J]. Int J Endocrinol, 2020, 2020: 4678526.
|
[11] |
BALA C, GHEORGHE-FRONEA O, POP D, et al. The association between six surrogate insulin resistance indexes and hypertension: a population-based study[J]. Metab Syndr Relat Disord, 2019, 17(6): 328-333. doi: 10.1089/met.2018.0122
|
[12] |
RAMÍREZ-VÉLEZ R, PÉREZ-SOUSA M Á, GONZÁLEZ-RUÍZ K, et al. Obesity- and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American diabetes association: an analysis of the 2015 health, well-being, and aging study[J]. Nutrients, 2019, 11(11): 2654. doi: 10.3390/nu11112654
|
[13] |
LIM J, KIM J, KOO S H, et al. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2019, 14(3): e0212963. doi: 10.1371/journal.pone.0212963
|
[14] |
BORNFELDT K E, TABAS I. Insulin resistance, hyperglycemia, and atherosclerosis[J]. Cell Metab, 2011, 14(5): 575-585. doi: 10.1016/j.cmet.2011.07.015
|
[15] |
AN X Q, YU D, ZHANG R Y, et al. Insulin resistance predicts progression of de novo atherosclerotic plaques in patients with coronary heart disease: a one-year follow-up study[J]. Cardiovasc Diabetol, 2012, 11: 71. doi: 10.1186/1475-2840-11-71
|
[16] |
HUANG Y C, HUANG J C, LIN C I, et al. Comparison of innovative and traditional cardiometabolic indices in estimating atherosclerotic cardiovascular disease risk in adults[J]. Diagnostics (Basel), 2021, 11(4): 603. doi: 10.3390/diagnostics11040603
|
[17] |
DU Z, XING L Y, LIN M, et al. Estimate of prevalent ischemic stroke from triglyceride glucose-body mass index in the general population[J]. BMC Cardiovasc Disord, 2020, 20(1): 483. doi: 10.1186/s12872-020-01768-8
|
[18] |
MENG X J, DONG G H, WANG D, et al. Epidemiology of prehypertension and associated risk factors in urban adults from 33 communities in China: the CHPSNE study[J]. Circ J, 2012, 76(4): 900-906. doi: 10.1253/circj.CJ-11-1118
|
[19] |
PAQUISSI F C, MANUEL V, MANUEL A, et al. Prevalence of cardiovascular risk factors among workers at a private tertiary center in Angola[J]. Vasc Health Risk Manag, 2016, 12: 497-503. doi: 10.2147/VHRM.S120735
|
[20] |
AFRIFA-ANANE E, AGYEMANG C, CODJOE S N, et al. The association of physical activity, body mass index and the blood pressure levels among urban poor youth in Accra, Ghana[J]. BMC Public Health, 2015, 15: 269. doi: 10.1186/s12889-015-1546-3
|
[21] |
MANCUSI C, IZZO R, DI GIOIA G, et al. Insulin resistance the hinge between hypertension and type 2 diabetes[J]. High Blood Press Cardiovasc Prev, 2020, 27(6): 515-526. doi: 10.1007/s40292-020-00408-8
|
[22] |
SCHERRER U, RANDIN D, VOLLENWEIDER P, et al. Nitric oxide release accounts for insulin's vascular effects in humans[J]. J Clin Invest, 1994, 94(6): 2511-2515. doi: 10.1172/JCI117621
|
[23] |
STEINBERG H O, CHAKER H, LEAMING R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance[J]. J Clin Invest, 1996, 97(11): 2601-2610. doi: 10.1172/JCI118709
|
[24] |
FUKUDA N, SATOH C, HU W Y, et al. Endogenous angiotensin Ⅱsuppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats[J]. J Hypertens, 2001, 19(9): 1651-1658. doi: 10.1097/00004872-200109000-00018
|
[25] |
LEMBO G, NAPOLI R, CAPALDO B, et al. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension[J]. J Clin Invest, 1992, 90(1): 24-29. doi: 10.1172/JCI115842
|
[26] |
MASI S, ULIANA M, VIRDIS A. Angiotensin Ⅱ and vascular damage in hypertension: role of oxidative stress and sympathetic activation[J]. Vascul Pharmacol, 2019, 115: 13-17. doi: 10.1016/j.vph.2019.01.004
|
[27] |
TABIT C E, CHUNG W B, HAMBURG N M, et al. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications[J]. Rev Endocr Metab Disord, 2010, 11(1): 61-74. doi: 10.1007/s11154-010-9134-4
|
[28] |
ZENG Z Y, LIU S X, XU H, et al. Association of triglyceride glucose index and its combination of obesity indices with prehypertension in lean individuals: a cross-sectional study of Chinese adults[J]. J Clin Hypertens (Greenwich), 2020, 22(6): 1025-1032. doi: 10.1111/jch.13878
|
[29] |
WILSON M L. Prediabetes: beyond the borderline[J]. Nurs Clin North Am, 2017, 52(4): 665-677. doi: 10.1016/j.cnur.2017.07.011
|
[30] |
CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138: 271-281. doi: 10.1016/j.diabres.2018.02.023
|
[31] |
KANBAY M, JENSEN T, SOLAK Y, et al. Uric acid in metabolic syndrome: from an innocent bystander to a central player[J]. Eur J Intern Med, 2016, 29: 3-8. doi: 10.1016/j.ejim.2015.11.026
|
[32] |
HYNDMAN D, LIU S, MINER J N. Urate handling in the human body[J]. Curr Rheumatol Rep, 2016, 18(6): 34. doi: 10.1007/s11926-016-0587-7
|
[33] |
TESTA A, PRUDENTE S, LEONARDIS D, et al. A genetic marker of hyperuricemia predicts cardiovascular events in a meta-analysis of three cohort studies in high risk patients[J]. Nutr Metab Cardiovasc Dis, 2015, 25(12): 1087-1094. doi: 10.1016/j.numecd.2015.08.004
|
[34] |
SAKURAI H. Urate transporters in the genomic era[J]. Curr Opin Nephrol Hypertens, 2013, 22(5): 545-550. doi: 10.1097/MNH.0b013e328363ffc8
|
[35] |
NAKAGAWA T, CIRILLO P, SATO W, et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease[J]. Intern Emerg Med, 2008, 3(4): 313-318. doi: 10.1007/s11739-008-0141-3
|
[36] |
VADAKEDATH S, KANDI V. Probable potential role of urate transporter genes in the development of metabolic disorders[J]. Cureus, 2018, 10(3): e2382.
|
[37] |
SHI W R, XING L Y, JING L, et al. Usefulness of Triglyceride-glucose Index for estimating Hyperuricemia risk: insights from a general Population[J]. Postgrad Med, 2019, 131(5): 348-356. doi: 10.1080/00325481.2019.1624581
|
[38] |
GU Q, HU X, MENG J, et al. Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: a cohort study in Chinese general population[J]. Int J Endocrinol, 2020, 2020: 3214716.
|
[39] |
FUJⅡ H, KAWADA N, JAPAN STUDY GROUP OF NAFLD JSG-NAFLD. The role of insulin resistance and diabetes in nonalcoholic fatty liver disease[J]. Int J Mol Sci, 2020, 21(11): 3863. doi: 10.3390/ijms21113863
|
[40] |
ZHANG S J, DU T T, LI M N, et al. Triglyceride glucose-body mass index is effective in identifying nonalcoholic fatty liver disease in nonobese subjects[J]. Medicine (Baltimore), 2017, 96(22): e7041. doi: 10.1097/MD.0000000000007041
|
[41] |
SIMENTAL-MENDÍA L E, SIMENTAL-MENDÍA E, RODRÍGUEZ-HERNÁNDEZ H, et al. The product of triglycerides and glucose as biomarker for screening simple steatosis and NASH in asymptomatic women[J]. Ann Hepatol, 2016, 15(5): 715-720.
|
[42] |
FEDCHUK L, NASCIMBENI F, PAIS R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2014, 40(10): 1209-1222. doi: 10.1111/apt.12963
|
1. |
孙琴,张雯,徐梦园,许素清,赵海河,靳敏丽. 肾四味合通窍活血汤对卒中后认知障碍患者血清神经递质及神经功能的影响. 实用临床医药杂志. 2025(01): 89-93 .
![]() | |
2. |
杨英亮,王泉亮,林晓青,孙春燕. 同型半胱氨酸联合血清miR-210-3p对急性缺血性脑卒中后认知功能障碍的预测价值分析. 中华养生保健. 2025(02): 1-4 .
![]() | |
3. |
梁洁,尹学敬,郭丽. PE患者血清NfL、IFI16、TGF-β1水平变化及其预测妊娠结局价值. 中国计划生育学杂志. 2024(03): 665-668 .
![]() | |
4. |
尚凤伟,王瑞丽,李海珍,马振林. 血清AQP4、NFL、BAFF水平与癫痫患儿认知功能的相关性及其对认知功能损害的评估价值. 海南医学. 2024(10): 1426-1430 .
![]() | |
5. |
钱晓林,耿文丽,马莉莉,乔妍,李焕. 高压氧联合阿替普酶静脉溶栓对急性缺血性脑卒中患者脑组织血流灌注状态及血清IMA、NFL、Occludin水平的影响. 现代生物医学进展. 2024(16): 3075-3078 .
![]() | |
6. |
吴阳,屈小莹,杜楠,陈悦,樊红彬. 癫痫患者血清NFL、Hcy、Irisin与认知功能和治疗后发作控制的关系. 现代生物医学进展. 2024(16): 3181-3185 .
![]() | |
7. |
沈路. 超早期与早期神经介入栓塞术对老年破裂颅内动脉瘤患者预后的影响. 医学理论与实践. 2024(19): 3286-3289 .
![]() | |
8. |
王玉娟,陈奇,李新艺,孟宇. 血清脂联素、基质金属蛋白酶-9与急性脑卒中患者认知功能障碍的相关性分析. 实用医院临床杂志. 2024(05): 97-100 .
![]() | |
9. |
马志辉,刘静一. 天麻素联合多感官刺激对脑卒中后认知功能障碍患者的疗效分析. 实用临床医药杂志. 2024(19): 105-108+113 .
![]() | |
10. |
余仕猛,雷超,李侃,谭倩,从林,马荣芳,柳青. 黄芪总苷调节蛋白激酶B-叉头框蛋白O1/3信号通路对大鼠脑缺血模型脑水肿的治疗作用研究. 中国临床神经科学. 2024(06): 620-628 .
![]() | |
11. |
龚世凤,张玉惠,王欣欣,谢洛洛. H型高血压合并急性缺血性脑卒中患者血清sLOX-1、Omentin-1、MMP-9水平检测的意义. 锦州医科大学学报. 2024(06): 37-41 .
![]() |