Citation: | CAO Qin, WANG Dan. Mechanism of ropivacaine inhibiting the proliferation, migration and invasion of gastric cancer cell NCI-N87 through Wnt signaling pathway[J]. Journal of Clinical Medicine in Practice, 2021, 25(20): 56-60, 67. DOI: 10.7619/jcmp.20211771 |
[1] |
SHI S, YANG Z Z, LIU S, et al. PIWIL1 promotes gastric cancer via a PiRNA-independent mechanism[J]. PNAS, 2020, 117(36): 22390-22401. doi: 10.1073/pnas.2008724117
|
[2] |
HUANG X, JIANG J Y, HUANG L J, et al. Ropivacaine prevents the activation of the NLRP3 inflammasome caused by high glucose in HUVECs[J]. ACS Omega, 2020, 5(36): 23413-23419. doi: 10.1021/acsomega.0c03143
|
[3] |
CHEN X, LIU W X, GUO X H, et al. Ropivacaine inhibits cervical cancer cell growth via suppression of the miR-96/MEG2/pSTAT3 axis[J]. Oncol Rep, 2020, 43(5): 1659-1668.
|
[4] |
WANG W T, ZHU M Y, XU Z X, et al. Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity[J]. Biol Res, 2019, 52(1): 36. doi: 10.1186/s40659-019-0242-7
|
[5] |
ZHANG Y, PENG X, ZHENG Q. Ropivacaine inhibits the migration of esophageal cancer cells via sodium-channel-independent but prenylation-dependent inhibition of Rac1/JNK/paxillin/FAK[J]. Biochem Biophys Res Commun, 2018, 501(4): 1074-1079. doi: 10.1016/j.bbrc.2018.05.110
|
[6] |
洪勇, 周民伟, 徐化交. 罗哌卡因经原癌基因信号通路抑制胃癌细胞增殖和迁移的机制[J]. 东南国防医药, 2020, 22(5): 456-460. doi: 10.3969/j.issn.1672-271X.2020.05.002
|
[7] |
BUGTER J M, FENDERICO N, MAURICE M M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer[J]. Nat Rev Cancer, 2021, 21(1): 5-21. doi: 10.1038/s41568-020-00307-z
|
[8] |
HAN T, GOSWAMI S, HU Y, et al. Lineage reversion drives WNT independence in intestinal cancer[J]. Cancer Discov, 2020, 10(10): 1590-1609. doi: 10.1158/2159-8290.CD-19-1536
|
[9] |
TOGASAKI K, SUGIMOTO S, OHTA Y, et al. Wnt signaling shapes the histologic variation in diffuse gastric cancer[J]. Gastroenterology, 2021, 160(3): 823-830. doi: 10.1053/j.gastro.2020.10.047
|
[10] |
NICÁCIO I P, STELLE A B F, BRUNO T S, et al. Comparison of intraperitoneal ropivacaine and ropivacaine-dexmedetomidine for postoperative analgesia in cats undergoing ovariohysterectomy[J]. Vet Anaesth Analg, 2020, 47(3): 396-404. doi: 10.1016/j.vaa.2020.01.007
|
[11] |
YANG W J, CAI J, ZHANG H M, et al. Effects of lidocaine and ropivacaine on gastric cancer cells through down-regulation of ERK1/2 phosphorylation in vitro[J]. Anticancer Res, 2018, 38(12): 6729-6735. doi: 10.21873/anticanres.13042
|
[12] |
DOFARA S G, CHANG S L, DIORIO C. Gene polymorphisms and circulating levels of MMP-2 and MMP-9: a review of their role in breast cancer risk[J]. Anticancer Res, 2020, 40(7): 3619-3631. doi: 10.21873/anticanres.14351
|
[13] |
PELTONEN R, HAGSTROM J, TERVAHARTIALA T, et al. High expression of MMP-9 in primary tumors and high preoperative MPO in serum predict improved prognosis in colorectal cancer with operable liver metastases[J]. Oncology, 2021, 99(3): 144-160.
|
[14] |
LI H Q, ZHAO J, JIA X M, et al. miR-21 promotes growth, invasion and migration of lung cancer cells by AKT/P-AKT/cleaved-caspase 3/MMP-2/MMP-9 signaling pathway[J]. Int J Clin Exp Pathol, 2020, 13(4): 692-700.
|
[15] |
JANG H Y, HONG O Y, YOUN H J, et al. 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism[J]. BMB Rep, 2020, 53(4): 212-217. doi: 10.5483/BMBRep.2020.53.4.164
|
[16] |
WAN H, PETER T D, SARANTOS K, et al. TGF β-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer[J]. Cellular and molecular life sciences: CMLS, 2020, 77(11): 2103-2123. doi: 10.1007/s00018-019-03398-6
|
[17] |
YI H Y, LI G P, LONG Y K, et al. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT[J]. Oncogene, 2020, 39(28): 5152-5164. doi: 10.1038/s41388-020-1351-z
|
[18] |
ROS M, SALA M, SALTEL F. Linking matrix rigidity with EMT and cancer invasion[J]. Dev Cell, 2020, 54(3): 293-295. doi: 10.1016/j.devcel.2020.06.032
|
[19] |
ZHANG C P, HAO Y L, SUN Y Y, et al. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis[J]. J Pharmacol Sci, 2019, 140(2): 128-136. doi: 10.1016/j.jphs.2019.03.005
|
[20] |
GUO T, YUAN X, LIU D F, et al. LncRNA HOXA11-AS promotes migration and invasion through modulating miR-148a/WNT1/β-catenin pathway in gastric cancer[J]. Neoplasma, 2020, 67(3): 492-500.
|
[21] |
YUE Z Y, YUAN Z J, ZENG L, et al. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells[J]. FASEB J, 2018, 32(5): 2422-2437. doi: 10.1096/fj.201700897R
|
[22] |
LV J, FENG Z P, CHEN F K, et al. M2-like tumor-associated macrophages-secreted Wnt1 and Wnt3a promotes dedifferentiation and metastasis via activating β-catenin pathway in thyroid cancer[J]. Mol Carcinog, 2021, 60(1): 25-37. doi: 10.1002/mc.23268
|
[23] |
ZHANG F, LI Y, XU W R, et al. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis[J]. Biosci Biotechnol Biochem, 2019, 83(7): 1289-1299. doi: 10.1080/09168451.2019.1606697
|