Citation: | CHEN Xiangyi, YU Dechen, ZHANG Ruihao, HU Yicun, WANG Keping, ZHOU Haiyu. Research progress on roles of Eph/Ephrin signaling pathway in primary bone tumor and bone cancer pain[J]. Journal of Clinical Medicine in Practice, 2021, 25(12): 128-132. DOI: 10.7619/jcmp.20211337 |
[1] |
KOU C J, KANDPAL R P. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers[J]. Biomed Res Int, 2018, 2018(2): 2-23. https://pubmed.ncbi.nlm.nih.gov/29682554/
|
[2] |
范文斌, 赵建宁, 包倪荣. EphB4-EphrinB2双向信号传导在骨重建中的作用[J]. 中国骨伤, 2013, 26(8): 705-708. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGU201308034.htm
|
[3] |
WU B, ROCKEL J S, LAGARES D, et al. Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis[J]. Curr Rheumatol Rep, 2019, 21(6): 2-11. doi: 10.1007/s11926-019-0825-x
|
[4] |
SAWAMIPHAK S, SEIDEL S, ESSMANN C L, et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis[J]. Nature, 2010, 465(7297): 487-491. doi: 10.1038/nature08995
|
[5] |
NAKAYAMA A, NAKAYAMA M, TURNER C J, et al. Ephrin-B2 controls PDGFRbeta internalization and signaling[J]. Genes Dev, 2013, 27(23): 2576-2589. doi: 10.1101/gad.224089.113
|
[6] |
KANIA A, KLEIN R. Mechanisms of ephrin-Eph signalling in development, physiology and disease[J]. Nat Rev Mol Cell Biol, 2016, 17(4): 240-256. doi: 10.1038/nrm.2015.16
|
[7] |
DAAR I O. Non-SH2/PDZ reverse signaling by ephrins[J]. Semin Cell Dev Biol, 2012, 23(1): 65-74. doi: 10.1016/j.semcdb.2011.10.012
|
[8] |
PASQUALE E B. Eph receptor signalling casts a wide net on cell behaviour[J]. Nat Rev Mol Cell Biol, 2005, 6(6): 462-475. doi: 10.1038/nrm1662
|
[9] |
ARVANITIS D N, DAVY A. Regulation and misregulation of Eph/ephrin expression[J]. Cell Adh Migr, 2012, 6(2): 131-137. doi: 10.4161/cam.19690
|
[10] |
JANES P W, GRIESSHABER B, ATAPATTU L, et al. Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors[J]. J Cell Biol, 2011, 195(6): 1033-1045. doi: 10.1083/jcb.201104037
|
[11] |
JANES P W, NIEVERGALL E, LACKMANN M. Concepts and consequences of Eph receptor clustering[J]. Semin Cell Dev Biol, 2012, 23(1): 43-50. doi: 10.1016/j.semcdb.2012.01.001
|
[12] |
XI H Q, WU X S, WEI B, et al. Eph receptors and ephrins as targets for cancer therapy[J]. J Cell Mol Med, 2012, 16(12): 2894-2909. doi: 10.1111/j.1582-4934.2012.01612.x
|
[13] |
PASQUALE E B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond[J]. Nat Rev Cancer, 2010, 10(3): 165-180. doi: 10.1038/nrc2806
|
[14] |
LAMB Y N. Daratumumab: A Review in Combination Therapy for Transplant-Eligible Newly Diagnosed Multiple Myeloma[J]. Drugs, 2020, 81(1): 1455-1464. doi: 10.1007/s40265-020-01385-x
|
[15] |
TERPOS E, NTANASIS-STATHOPOULOS I, GAVRIATOPOULOU M, et al. Pathogenesis of bone disease in multiple myeloma: from bench to bedside[J]. Blood Cancer J, 2018, 8(1): 7-19. doi: 10.1038/s41408-017-0037-4
|
[16] |
ZHAO C, IRIE N, TAKADA Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis[J]. Cell Metab, 2006, 4(2): 111-121. doi: 10.1016/j.cmet.2006.05.012
|
[17] |
PENNISI A, LING W, LI X, et al. The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth[J]. Blood, 2009, 114(9): 1803-1812. doi: 10.1182/blood-2009-01-201954
|
[18] |
OSHIMA T, ABE M, ASANO J, et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2[J]. Blood, 2005, 106(9): 3160-3165. doi: 10.1182/blood-2004-12-4940
|
[19] |
GUAN M, LIU L, ZHAO X, et al. Copy number variations of EphA3 are associated with multiple types of hematologic malignancies[J]. Clin Lymphoma Myeloma Leuk, 2011, 11(1): 50-53. doi: 10.3816/CLML.2011.n.006
|
[20] |
DING L, SHEN Y, NI J, et al. EphA4 promotes cell proliferation and cell adhesion-mediated drug resistance via the AKT pathway in multiple myeloma[J]. Tumour Biol, 2017, 39(3): 1010428317694298. http://europepmc.org/abstract/MED/28351297
|
[21] |
CAIVANO A, LA ROCCA F, LAURENZANA I, et al. Epha3 acts as proangiogenic factor in multiple myeloma[J]. Oncotarget, 2017, 8(21): 34298-34309. doi: 10.18632/oncotarget.16100
|
[22] |
GRVNEWALD T G P, CIDRE-ARANAZ F, SURDEZ D, et al. Ewing sarcoma[J]. Nat Rev Dis Primers, 2018, 4(1): 5-27. doi: 10.1038/s41572-018-0003-x
|
[23] |
BAHARUDDIN W N A, YUSOFF A A M, ABDULLAH J M, et al. Roles of EphA2 Receptor in Angiogenesis Signaling Pathway of Glioblastoma Multiforme[J]. Malays J Med Sci, 2018, 25(6): 22-27. http://www.ncbi.nlm.nih.gov/pubmed/30914876
|
[24] |
SAINZ-JASPEADO M, HUERTAS-MARTINEZ J, LAGARES-TENA L, et al. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1[J]. PLoS One, 2013, 8(8): e71449. doi: 10.1371/journal.pone.0071449
|
[25] |
NAZERI E, GOURAN SAVADKOOHI M, MAJIDZADEH A K, et al. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets[J]. Crit Rev Oncol Hematol, 2018, 131: 102-109. doi: 10.1016/j.critrevonc.2018.09.001
|
[26] |
KALINSKI T, ROPKE A, SEL S, et al. Down-regulation of ephrin-A5, a gene product of normal cartilage, in chondrosarcoma[J]. Hum Pathol, 2009, 40(12): 1679-1685. doi: 10.1016/j.humpath.2009.03.024
|
[27] |
NGUYEN T M, ARTHUR A, ZANNETTINO A C, et al. EphA5 and EphA7 forward signaling enhances human hematopoietic stem and progenitor cell maintenance, migration, and adhesion via Rac1 activation[J]. Exp Hematol, 2017, 48: 72-78. doi: 10.1016/j.exphem.2016.12.001
|
[28] |
ABDOU A G, ABD EL-WAHED M M, ASAAD N Y, et al. Immunohistochemical profile of ephrin A4 expression in human osteosarcoma[J]. APMIS, 2009, 117(4): 277-285. doi: 10.1111/j.1600-0463.2009.02448.x
|
[29] |
ABDOU A G, ABD EL-WAHED M M, ASAAD N Y, et al. Ephrin A4 expression in osteosarcoma, impact on prognosis, and patient outcome[J]. Indian J Cancer, 2010, 47(1): 46-52. doi: 10.4103/0019-509X.58859
|
[30] |
POSTHUMADEBOER J, PIERSMA S R, PHAM T V, et al. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery[J]. Br J Cancer, 2013, 109(8): 2142-2154. doi: 10.1038/bjc.2013.578
|
[31] |
FRITSCHE-GUENTHER R, NOSKE A, UNGETHUM U, et al. De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway[J]. Histopathology, 2010, 57(6): 836-850. doi: 10.1111/j.1365-2559.2010.03713.x
|
[32] |
YU L, XIA K, GAO T, et al. The Notch Pathway Promotes Osteosarcoma Progression through Activation of Ephrin Reverse Signaling[J]. Mol Cancer Res, 2019, 17(12): 2383-2394. doi: 10.1158/1541-7786.MCR-19-0493
|
[33] |
ZAJACZKOWSKA R, KOCOT-KEPSKA M, LEPPERT W, et al. Bone Pain in Cancer Patients: Mechanisms and Current Treatment[J]. Int J Mol Sci, 2019, 20(23): 6047-6067. doi: 10.3390/ijms20236047
|
[34] |
DONG Y, MAOYING QL, CHEN J W, et al. Involvement of EphB1 receptor/ephrinB1 ligand in bone cancer pain[J]. Neurosci Lett, 2011, 496(3): 163-167. doi: 10.1016/j.neulet.2011.04.008
|
[35] |
YU S N, LIU G F, LI L Y, et al. Analgesic effects of microRNA-129-5p against bone cancer pain through the EphB1/EphrinB2 signaling pathway in mice[J]. J Cell Biochem, 2019, 120(3): 2876-2885. doi: 10.1002/jcb.26605
|
[36] |
LIU S, LIU W T, LIU Y P, et al. Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents[J]. Cancer Res, 2011, 71(13): 4392-4402. doi: 10.1158/0008-5472.CAN-10-3870
|
[37] |
LIU S, LIU Y P, SONG W B, et al. EphrinB-EphB receptor signaling contributes to bone cancer pain via Toll-like receptor and proinflammatory cytokines in rat spinal cord[J]. Pain, 2013, 154(12): 2823-2835. doi: 10.1016/j.pain.2013.08.017
|
[38] |
DAMELIN M, BANKOVICH A, PARK A, et al. Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions[J]. Clin Cancer Res, 2015, 21(18): 4165-4173. doi: 10.1158/1078-0432.CCR-15-0695
|
1. |
孙琴,张雯,徐梦园,许素清,赵海河,靳敏丽. 肾四味合通窍活血汤对卒中后认知障碍患者血清神经递质及神经功能的影响. 实用临床医药杂志. 2025(01): 89-93 .
![]() | |
2. |
杨英亮,王泉亮,林晓青,孙春燕. 同型半胱氨酸联合血清miR-210-3p对急性缺血性脑卒中后认知功能障碍的预测价值分析. 中华养生保健. 2025(02): 1-4 .
![]() | |
3. |
梁洁,尹学敬,郭丽. PE患者血清NfL、IFI16、TGF-β1水平变化及其预测妊娠结局价值. 中国计划生育学杂志. 2024(03): 665-668 .
![]() | |
4. |
尚凤伟,王瑞丽,李海珍,马振林. 血清AQP4、NFL、BAFF水平与癫痫患儿认知功能的相关性及其对认知功能损害的评估价值. 海南医学. 2024(10): 1426-1430 .
![]() | |
5. |
钱晓林,耿文丽,马莉莉,乔妍,李焕. 高压氧联合阿替普酶静脉溶栓对急性缺血性脑卒中患者脑组织血流灌注状态及血清IMA、NFL、Occludin水平的影响. 现代生物医学进展. 2024(16): 3075-3078 .
![]() | |
6. |
吴阳,屈小莹,杜楠,陈悦,樊红彬. 癫痫患者血清NFL、Hcy、Irisin与认知功能和治疗后发作控制的关系. 现代生物医学进展. 2024(16): 3181-3185 .
![]() | |
7. |
沈路. 超早期与早期神经介入栓塞术对老年破裂颅内动脉瘤患者预后的影响. 医学理论与实践. 2024(19): 3286-3289 .
![]() | |
8. |
王玉娟,陈奇,李新艺,孟宇. 血清脂联素、基质金属蛋白酶-9与急性脑卒中患者认知功能障碍的相关性分析. 实用医院临床杂志. 2024(05): 97-100 .
![]() | |
9. |
马志辉,刘静一. 天麻素联合多感官刺激对脑卒中后认知功能障碍患者的疗效分析. 实用临床医药杂志. 2024(19): 105-108+113 .
![]() | |
10. |
余仕猛,雷超,李侃,谭倩,从林,马荣芳,柳青. 黄芪总苷调节蛋白激酶B-叉头框蛋白O1/3信号通路对大鼠脑缺血模型脑水肿的治疗作用研究. 中国临床神经科学. 2024(06): 620-628 .
![]() | |
11. |
龚世凤,张玉惠,王欣欣,谢洛洛. H型高血压合并急性缺血性脑卒中患者血清sLOX-1、Omentin-1、MMP-9水平检测的意义. 锦州医科大学学报. 2024(06): 37-41 .
![]() |