Citation: | Research progress on the pathogenesis of depression and acupuncture therapy[J]. Journal of Clinical Medicine in Practice, 2019, 23(8): 123-127. DOI: 10.7619/jcmp.201908034 |
[1] |
江开达. 精神病学[M]. 2版. 北京: 人民卫生出版社, 2010: 142-152.
|
[2] |
Schwartz C M. Electroconvulsive and Neuromodulation Therapies[M]. New York: Cambridge University Press, 2009: 1-10.
|
[3] |
Fraser L M, O′Carroll R E, Ebmeier K P. The effect of electroconvulsive therapy on autobiographical memory: a systematic review[J]. J ECT, 2008, 24(1): 10-17. doi: 10.1097/YCT.0b013e3181616c26
|
[4] |
Dunn A J, Swiergiel A H, de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies[J]. Neurosci Biobehav Rev, 2005, 29(4/5): 891-909. http://www.sciencedirect.com/science/article/pii/S0149763405000539
|
[5] |
Han Q Q, Yu J. Inflammation: a mechanism of depression[J]. Neurosci Bull, 2014, 30(3): 515-523. doi: 10.1007/s12264-013-1439-3
|
[6] |
Marin I A, Goertz J E, Ren T T, et al. Microbiota alteration is associated with the development of stress-induced despair behavior[J]. Sci Rep, 2017, 7: 43859-43866. doi: 10.1038/srep43859
|
[7] |
Qaseem A, Barry M J, Kansagara D, et al. Nonpharmacologic versus pharmacologic treatment of adult patients with major depressive disorder: a clinical practice guideline from the american college of physicians[J]. Ann Intern Med, 2016, 164(5): 350-359. doi: 10.7326/M15-2570
|
[8] |
Chilmonczyk Z, Bojarski A J, Pilc A, et al. Functional selectivity and antidepressant activity of serotonin 1A receptor ligands[J]. Int J Mol Sci, 2015, 16(8): 18474-18506. doi: 10.3390/ijms160818474
|
[9] |
Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression[J]. Philos Trans R Soc Lond, B, Biol Sci, 2013, 368(1615): 20120536-20120543. doi: 10.1098/rstb.2012.0536
|
[10] |
Charney D S. Monoamine dysfunction and the pathophysiology and treatment of depression[J]. J Clin Psychiatry, 1998, 59(Suppl 14): 11-14. http://europepmc.org/abstract/med/9818625
|
[11] |
Schwartz J W, Novarino G, Piston D W, et al. Substrate binding stoichiometry and kinetics of the norepinephrine transporter[J]. J Biol Chem, 2005, 280(19): 19177-19184. doi: 10.1074/jbc.M412923200
|
[12] |
Chen P, Fan Y, Li Y, et al. Chronic social defeat up-regulates expression of norepinephrine transporter in rat brains[J]. Neurochem Int, 2012, 60(1): 9-20. doi: 10.1016/j.neuint.2011.11.003
|
[13] |
Moriguchi S, Yamada M, Takano H, et al. Norepinephrine transporter in major depressive disorder: a PET study[J]. Am J Psychiatry, 2017, 174(1): 36-41. doi: 10.1176/appi.ajp.2016.15101334
|
[14] |
孟亚琴, 孙宁, 王彦芳, 等. 5-羟色胺和去甲肾上腺素转运体基因多态性的交互作用与重性抑郁障碍临床疗效的关联研究[J]. 中华行为医学与脑科学杂志, 2013, 22(3): 212-214. doi: 10.3760/cma.j.issn.1674-6554.2013.03.007
|
[15] |
Lauder J M, Bloom F E. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation[J]. J Comp Neurol, 1974, 155(4): 469-481. doi: 10.1002/cne.901550407
|
[16] |
Menegas W, Bergan J F, Ogawa S K, et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass[J]. Elife, 2015, 4: e10032-e10038. doi: 10.7554/eLife.10032
|
[17] |
Grace A A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression[J]. Nat Rev Neurosci, 2016, 17(8): 524-532. doi: 10.1038/nrn.2016.57
|
[18] |
Pandit R, Omrani A, Luijendijk M C, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward[J]. Neuropsychopharmacology, 2016, 41(9): 2241-2251. doi: 10.1038/npp.2016.19
|
[19] |
Janowsky D S, el-Yousef M K, Davis J M, et al. A cholinergic-adrenergic hypothesis of mania and depression[J]. Lancet, 1972, 2(7778): 632-635. http://www.sciencedirect.com/science/article/pii/S0140673672930218
|
[20] |
Steinberg B J, Trestman R, Mitropoulou V, et al. Depressive response to physostigmine challenge in borderline personality disorder patients[J]. Neuropsychopharmacology, 1997, 17(4): 264-273. doi: 10.1016/S0893-133X(97)00051-1
|
[21] |
Mineur Y S, Obayemi A, Wigestrand M B, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior[J]. Proc Natl Acad Sci USA, 2013, 110(9): 3573-3578. doi: 10.1073/pnas.1219731110
|
[22] |
Drevets W C, Zarate C A Jr, Furey M L. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review[J]. Biol Psychiatry, 2013, 73(12): 1156-1163. doi: 10.1016/j.biopsych.2012.09.031
|
[23] |
Mineur Y S, Mose T N, Blakeman S, et al. Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice[J]. British Journal of Pharmacology, 2018, 175(11): 1903-1914. doi: 10.1111/bph.13769
|
[24] |
Levinson A J, Fitzgerald P B, Favalli G, et al. Evidence of cortical inhibitory deficits in major depressive disorder[J]. Biol Psychiatry, 2010, 67(5): 458-464. doi: 10.1016/j.biopsych.2009.09.025
|
[25] |
Berrettini W H, Nurnberger J I Jr, Hare T A, et al. Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate[J]. Biol Psychiatry, 1983, 18(2): 185-194. http://www.ncbi.nlm.nih.gov/pubmed/6403063
|
[26] |
Price R B, Shungu D C, Mao X L, et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder[J]. Biol Psychiatry, 2009, 65(9): 792-800. doi: 10.1016/j.biopsych.2008.10.025
|
[27] |
Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives[J]. Biol Psychiatry, 2017, 82(8): 549-559. doi: 10.1016/j.biopsych.2017.05.024
|
[28] |
Liu Y, Ho R C M, Mak A. Interleukin (IL-6), tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression[J]. Journal of Affective Disorders, 2012, 139(3): 230-239. doi: 10.1016/j.jad.2011.08.003
|
[29] |
Kim Y K, Maes M. The role of the cytokine network in psychological stress[J]. Acta Neuropsychiatr, 2003, 15(3): 148-155. doi: 10.1034/j.1601-5215.2003.00026.x
|
[30] |
Villanueva R. Neurobiology of major depressive disorder[J]. Neural Plast, 2013, 2013: 873278-873284.
|
[31] |
Kubera M, Obuchowicz E, Goehler L, et al. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(3): 744-759. doi: 10.1016/j.pnpbp.2010.08.026
|
[32] |
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression[J]. Metab Brain Dis, 2009, 24(1): 27-53. doi: 10.1007/s11011-008-9118-1
|
[33] |
Pandya C D, Howell K R, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 46: 214-223. http://www.sciencedirect.com/science/article/pii/S0278584612002722
|
[34] |
Ozcan M E, Gulec M, Ozerol E, et al. Antioxidant enzyme activities and oxidative stress in affective disorders[J]. Int Clin Psychopharmacol, 2004, 19(2): 89-95. doi: 10.1097/00004850-200403000-00006
|
[35] |
Lederberg J, McCray A T. "Ome sweet" omics-a genealogical treasury of words[J]. TheScientist, 2001, 15(7): 8-14. http://www.researchgate.net/publication/284669120_'ome_sweet_'omics-a_genealogical_treasury_of_words
|
[36] |
Tannock G W. Understanding the Gut Microbiota[M]. Hoboken: John Wiley & Sons, Inc., 2017: 1-11.
|
[37] |
Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats[J]. Psychoneuroendocrinology, 2012, 37(11): 1885-1895. doi: 10.1016/j.psyneuen.2012.03.024
|
[38] |
Barrett E, Ross R P, O′Toole P W, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113(2): 411-417. doi: 10.1111/j.1365-2672.2012.05344.x
|
[39] |
Cummings J H, Pomare E W, Branch W J, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10): 1221-1227. doi: 10.1136/gut.28.10.1221
|
[40] |
Bouskra D, Brézillon C, Bérard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J]. Nature, 2008, 456(7221): 507-510. doi: 10.1038/nature07450
|
[41] |
Maes M, Kubera M, Leunis J C, et al. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut[J]. J Affect Disord, 2012, 141(1): 55-62. doi: 10.1016/j.jad.2012.02.023
|
[42] |
Maes M, Kubera M, Leunis J C, et al. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes[J]. Acta Psychiatr Scand, 2013, 127(5): 344-354. doi: 10.1111/j.1600-0447.2012.01908.x
|
[43] |
Kelly J R, Borre Y, O′Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-118. doi: 10.1016/j.jpsychires.2016.07.019
|
[44] |
Cheung S G, Goldenthal A R, Uhlemann A C, et al. Systematic review of gut microbiota and major depression[J]. Front Psychiatry, 2019, 10: 34. http://www.researchgate.net/publication/331016270_Systematic_Review_of_Gut_Microbiota_and_Major_Depression
|
[45] |
Youn J I, Sung K K, Song B K, et al. Effects of electro-acupuncture therapy on post-stroke depression in patients with different degrees of motor function impairments: a pilot study[J]. J Phys Ther Sci, 2013, 25(6): 725-728. doi: 10.1589/jpts.25.725
|
[46] |
Yoshimura R, Umene-Nakano W, Hoshuyama T, et al. Plasma levels of brain-derived neurotrophic factor and interleukin-6 in patients with dysthymic disorder: comparison with age-and sex-matched major depressed patients and healthy controls[J]. Hum Psychopharmacol, 2010, 25(7/8): 566-569. http://www.ncbi.nlm.nih.gov/pubmed/21312291
|
[47] |
梁佳. 针刺与帕罗西汀对抑郁状态神经元保护机制的差异性研究[D]. 北京: 北京中医药大学, 2012.
|
[48] |
Sakiĉ B, Gauldie J, Denburg J A, et al. Behavioral effects of infection with IL-6 adenovector[J]. Brain Behav Immun, 2001, 15(1): 25-42. doi: 10.1006/brbi.1999.0576
|
[49] |
Guo T W, Guo Z, Yang X J, et al. The alterations of IL-1 beta, IL-6, and TGF-beta levels in hippocampal CA3 region of chronic restraint stress rats after electroacupuncture (EA) pretreatment[J]. Evid Based Complement Alternat Med, 2014, 2014: 369158-369164. http://downloads.hindawi.com/journals/ecam/2014/369158.xml
|
[50] |
Hopkins S J, Rothwell N J. Cytokines and the nervous system. I: Expression and recognition[J]. Trends Neurosci, 1995, 18(2): 83-88. doi: 10.1016/0166-2236(95)80029-2
|
[51] |
Shi R X, Wu Q, Qin L N, et al. The effects of Electric Acupuncture on body weights and HPA axis of chronic stress rats[J]. Journal of Clinical Acupuncture and Moxibustion, 2007, 23(1): 173-175.
|
[52] |
梁佳, 李卫东, 吴元坪, 等. 电针对慢性应激抑郁模型大鼠海马神经元凋亡与再生的影响[J]. 中华中医药杂志, 2012, 27(4): 947-950. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201204038.htm
|
[53] |
Li Q, Yue N, Liu S B, et al. Effects of chronic electroacupuncture on depression- and anxiety-like behaviors in rats with chronic neuropathic pain[J]. Evid Based Complement Alternat Med, 2014, 2014: 158987-158994.
|
[54] |
Chen F, Zhou L B, Bai Y Y, et al. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A[J]. J Biomed Res, 2015, 29(3): 250-258. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJYY201503009.htm
|
[55] |
Wang S J, Zhang J J, Yang H Y, et al. Acupoint specificity on acupuncture regulation of hypothalamic-pituitary-adrenal cortex axis function[J]. BMC Complement Altern Med, 2015, 15: 87. doi: 10.1186/s12906-015-0625-4
|
[56] |
Lupien S J, McEwen B S, Gunnar M R, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition[J]. Nat Rev Neurosci, 2009, 10(6): 434-445.
|
[57] |
Le J J, Yi T, Qi L, et al. Electroacupuncture regulate hypothalamic-pituitary-adrenal axis and enhance hippocampal serotonin system in a rat model of depression[J]. Neurosci Lett, 2016, 615: 66-71.
|
[58] |
Wang S J, Zhang J J, Qie L L. Acupuncture relieves the excessive excitation of hypothalamic-pituitary-adrenal cortex axis function and correlates with the regulatory mechanism of GR, CRH, and ACTHR[J]. Evid Based Complement Alternat Med, 2014, 2014: 495379.
|
[59] |
Drevets W C, Price J L, Furey M L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression[J]. Brain Struct Funct, 2008, 213(1/2): 93-118.
|
[60] |
Mo Y P, Yao H J, Song H T, et al. Alteration of behavioral changes and hippocampus galanin expression in chronic unpredictable mild stress-induced depression rats and effect of electroacupuncture treatment[J]. Evid Based Complement Alternat Med, 2014, 2014: 179796-179804. http://www.ncbi.nlm.nih.gov/pubmed/25530777
|
[61] |
Ogren S O, Kuteeva E, Elvander-Tottie E, et al. Neuropeptides in learning and memory processes with focus on galanin[J]. Eur J Pharmacol, 2010, 626(1): 9-17. http://www.ncbi.nlm.nih.gov/pubmed/19837050
|
[62] |
Yoshitake T, Yoshitake S, Savage S, et al. Galanin differentially regulates acetylcholine release in ventral and dorsal hippocampus: a microdialysis study in awake rat[J]. Neuroscience, 2011, 197: 172-180. http://d.wanfangdata.com.cn/periodical/4e254175ac505e40227f6e0b8e4203db
|