肿瘤体积对局部晚期鼻咽癌预后影响的倾向匹配研究

胡 勇¹,张晶晶²,岳成山¹,刘亚军¹,王会霞¹, 高 山¹,张 强¹,张 蕾¹,袁 亮²

(陕西省汉中市中心医院, 1. 放疗科, 2. 肿瘤内科, 陕西 汉中, 723000)

摘 要:目的 探讨肿瘤体积(GTV)对局部晚期鼻咽癌患者预后的影响。方法 分析 310 例接受放化疗的 $\mathbb{II} \sim \mathbb{IV}$ A/B 期鼻咽癌患者的临床资料及随访资料,以受试者工作特征(ROC)曲线确定治疗前 GTV 最佳界值为 34.1 mL, 选取 GTV > 34.1 mL 患者 106 例纳入实验组,依据年龄、性别、卡氏功能状态量表(KPS)评分、T 分期、N 分期、临床分期采用倾向值匹配法,获得 106 例(1:1 匹配) GTV \leqslant 34.1 mL 患者纳入对照组。采用 Kaplan-Meier 法计算生存率,以 Cox 回归模型进行预后因素分析。主要研究终点为无局部-区域进展生存率(LRRFS),次要研究终点为总生存率(OS)和无远处转移生存率(DMFS)。结果 实验组 4 年 LRRFS(80.2%)低于对照组(92.5%),4 年 OS(77.4%)低于对照组(84.0%),差异有统计学意义(P=0.008、0.043);实验组与对照组 4 年 DMFS 分别为 68.9%、74.5%,差异无统计学意义(P=0.273);Cox 回归模型显示,GTV > 34.1 mL 是 LRRFS和 OS的不良影响因素。结论 GTV > 34.1 mL 是局部晚期鼻咽癌患者局部-区域进展和死亡的不良影响因素,对此类患者需增大治疗强度,以获得更好的临床疗效。

关键词: 鼻咽癌; 肿瘤体积; 预后; 倾向值匹配法

中图分类号: R 739.6 文献标志码: A 文章编号: 1672-2353(2020)20-051-04 DOI: 10.7619/jcmp. 202020014

Effect of tumor volume on prognosis of patients with local advanced nasopharyngeal carcinoma: a propensity-matched study

HU Yong¹, ZHANG Jingjing², YUE Chengshan¹, LIU Yajun¹, WANG Huixia¹, GAO Shan¹, ZHANG Qiang¹, ZHANG Lei¹, YUAN Liang²

(1. Department of Radiotherapy, 2. Department of Oncology, Central Hospital of Hanzhong City in Shaanxi Province, Hanzhong, Shaanxi, 723000)

Abstract: Objective To evaluate the primary gross tumor volume (GTV) on prognosis in patients with local advanced nasopharyngeal carcinoma. **Methods** The clinical data and follow-up data of 310 patients with nasopharyngeal carcinoma in III to IVA/B phase undergoing chemoradiotherapy were retrospectively analyzed. The optimized critical value of GTV was confirmed as 34.1 mL by Receiver Operating Characteristic (ROC) curve analysis. A total of 106 cases with GTV > 34.1 mL were included in the experimental group. Propensity matched study method was used to adjust for age, gender, Karnofsky Performance Status (KPS), tumor stage, node stage, and clinical stage. At last, a well-balanced cohort (106 cases who had GTV of less or equaling to 34.1 mL) was created by 1:1 matching in the control group. Survival rate was calculated using Kaplan-Meier method, and prognostic factors were analyzed using Cox regression model. The primary end-point was loco-regional relapse-free survival rate (LRRFS), secondary end-points were overall survival (OS) and distant metastasis-free survival (DMFS). **Results** The experimental group had lower 4-year LRRFS and OS when compared to the control group (80.2% versus 92.5%, 77.4% versus 84.0%, P = 0.008, 0.043). The 4-year DMFS of the experimental group and the control group were 68.9% and 74.5%, respectively, but no significant difference was found (P = 0.273). Cox regression model showed that GTV > 34.1 mL was an adverse influencing factor of LRRFS and OS. Conclusion GTV > 34.1 mL is an adverse influencing

收稿日期: 2020 - 08 - 18

第24卷

factor for loco-regional progress and death in local advanced nasopharyngeal carcinoma. It is necessary to increase the treatment intensity in order to obtain better clinical efficacy.

Journal of Clinical Medicine in Practice

Key words: nasopharyngeal carcinoma; gross tumor volume; prognosis; propensity score matching method

TNM 分期是国际通用的反映肿瘤预后和负 荷的指征,其理论基础是以侵犯的解剖结构为界 定。恶性肿瘤发生的时间越长,肿瘤体积(GTV) 越大,可能受侵犯的解剖范围越广,治疗效果亦越 差[1]。鼻咽癌位于鼻腔后方、软腭后上方,上至 颅底,下至软腭下缘,其周围有疏松的结缔组织和 各种腔道,又有坚硬的骨质结构,加之肿瘤浸润性 生长的生物学特性,决定了鼻咽癌肿瘤组织大多 形状不规则。1995 年, JOHNSON C R 等^[2]提出 如果生长分数恒定,GTV 和肿瘤细胞克隆数呈线 性关系的理论,即GTV增大对头颈部肿瘤局部区 域控制具有不利影响。SZE W M 等[3] 证实,肿瘤 体积每增大1 cm3,肿瘤局部复发的风险就增加 1%。局部晚期鼻咽癌治疗效果较差,治疗强度的 选择需要个体化考虑,而 GTV 是非常重要的因 素。本研究通过倾向值匹配法获得平衡数据作进 一步对比分析,旨在了解治疗前 GTV 是否可作为 接受放化疗的Ⅲ~IV A/B 期鼻咽癌患者生存情 况的有效预测指标,并为临床治疗强度的选择提 供参考依据。

1 资料与方法

1.1 一般资料

选取本院 2012 年 11 月 5 日—2015 年 3 月 5 日收治的初诊鼻咽癌患者作为研究对象,患者均采用 2011 年第 7 版美国癌症协会(AJCC)分期结合临床特征及影像学结果重新分期。入组标准:病理检查确诊为鼻咽癌者;首次进行放射治疗者;放疗前行鼻咽部+颈部核磁共振检查者;临床分期确定为III~IVA/B 期者;治疗前无严重出血、贫血、感染、严重心脏病、肾脏疾病或其他随时可能发生危险的疾病者;无放疗禁忌证者。排除标准:无完整检查结果者;未完成放疗计划者。

1.2 治疗方法

采用直线加速器 6 MV 高能 X 射线放疗。参考核磁共振或正电子发射计算机断层显像(PET-CT) 在增强 CT 定位图像上勾画原发肿瘤和区域阳性淋巴结作为 GTV[鼻咽部原发大体肿瘤体积(GTVnx)和颈部阳性淋巴结大体肿瘤体积(GTVnd)]。临床靶体积(CTV)设计 2 个剂量梯度 CTV1(高危临

床靶体积)和 CTV2(低危临床靶体积)。GTV 总剂量为 66~70 Gy,分 33 次放疗;CTV1 总剂量为 60 Gy,分 33 次放疗;CTV2 总剂量为 54 Gy,分 33 次放疗。放疗 5 次/周,6~7 周完成放疗。依据美国肿瘤放射治疗协作组 0225 号实验标准勾画危及器官及限定剂量。

同期化疗方案采用顺铂或奈达铂单药 75~100 mg/m²,每3周为1个周期,行新辅助或辅助化疗,采用氟尿嘧啶联合顺铂或紫杉醇联合顺铂方案。总化疗周期不超过6个周期。所有患者均签署放化疗知情同意书。本研究经本院伦理委员会审核批准。

1.3 GTV 测定方法

所有患者头颈肩热塑膜固定后,采用西门子大孔径 CT 扫描计划图像和增强图像。扫描范围从头颅上 2 cm 至锁骨头下,层厚 3 mm。参考核磁共振、鼻咽镜逐层勾画肿瘤侵犯范围。GTV 包括原发鼻咽部肿瘤体积、咽后淋巴结和颈部转移淋巴结体积之和。由 2 名副高及以上职称医师共同确定靶区勾画的范围,以调强放疗计划系统自动计算 GTV 值。

1.4 随访方法

治疗结束后1年内,每3个月复查1次,1年后则间隔6个月复查1次。常规复查项目包括胸部X射线、腹部彩超、鼻咽镜、鼻咽部核磁共振检查及核素全身骨显像扫描。局部复发病例需要有病理学依据或影像学可见的持续进展病灶。所有患者从治疗结束后随访至死亡或者失访,失访者以末次门诊随访结果为准。中位随访时间为49.3个月。

1.5 统计学分析

采用 SPSS 20.0 统计学软件分析数据。从患者开始放疗时计算生存期,采用 Kaplan-Meier 法计算无局部-区域复发生存率(LRRFS)、总生存率(OS)、无远处转移生存率(DMFS);组间差别采用Log-rank 检验;以受试者工作特征(ROC)曲线确定 GTV 最佳界值。采用倾向值匹配法,依据卡氏功能状态量表(KPS)评分、性别、年龄、T分期、N分期、临床分期等临床因素建立与实验组完全平衡的对照组。2 组间资料平衡性采用 χ^2 检验或非参数检验。Cox 比例风险模型采用似然比(向前逐步选

择法)进行多因素分析并计算风险比率(HR)和95%置信区间(95% CI)。多因素分析中,将以下因素作为协变量纳入分析,包括 KPS 评分(\leq 80分、>80分)、年龄(>50岁、 \leq 50岁)、性别、T 分期($T_1 \sim T_4$)、N 分期($N_0 \sim N_3$)、临床分期(\blacksquare 期、 \blacksquare 10 和 GTV(>34.1 mL、 \leq 34.1 mL)。

2 结 果

2.1 患者临床资料特征

本研究共收集符合入组条件的 310 例Ⅲ~IVA/B期鼻咽癌患者的资料,建立数据库。15 例患者仅接受单纯放疗,37 例患者接受单独同步化疗(CC),253 例患者接受至少1 周期诱导化疗(IC)或辅助化疗(AC)联合同期放化疗。ROC 曲线结果显示最佳筛查阳性界值为 34.1 mL,采用SPSS 22.0 中倾向值匹配法,依据 KPS 评分、年龄、性别、T分期、N分期、临床分期、治疗情况等因素纳入与实验组(GTV > 34.1 mL)患者一般资料平衡的对照组(GTV ≤ 34.1 mL)患者一般资料平衡的对照组(GTV ≤ 34.1 mL)患者 106 例(1:1匹配)。配对资料显示,2 组在临床分期、接受化疗情况、N分期、T分期、性别、年龄、KPS评分等方面比较,差异均无统计学意义(P > 0.05),见表1。

表 1 212 例匹配后患者的一般临床特征比较

农 1 212 例应能/ 总有的一般临床存证比较							
临床特征		实验组 (n=106)	对照组 (n=106)	P			
性别	女	20	24	0.612			
	男	86	82				
年龄	≤50 岁	75	77	0.879			
	>50岁	31	29				
KPS 评分	≤80分	3	5	0.721			
	>80分	103	101				
T 分期	T_1	5	3	0.387			
	T_2	12	13				
	T_3	69	76				
	T_4	20	14				
N 分期	N_0	5	10	0.586			
	N_1	50	47				
	N_2	41	42				
	N_3	5	7				
总分期	Ⅲ期	77	75	0.760			
	IVA/B期	29	31				
化疗情况	RT	7	8	0.846			
	CC	20	17				
	IC/AC + CC	79	81				

KPS: 卡氏功能状态量表; RT: 放射治疗;

CC: 同步化疗; IC: 诱导化疗; AC: 辅助化疗。

2.2 疾病进展特征

所有患者中位随访时间为 49.3 个月,截至随 访结束配对后的 212 例患者中,76 例出现疾病进 展,其中 16 例患者局部和/或区域复发,47 例患者远处转移,局部和/或区域复发合并远处转移者有 13 例。16 例局部和/或区域复发患者中,实验组(GTV > 34.1 mL)占 10 例(62.5%),对照组(GTV \leq 34.1 mL)占 6 例(37.5%)。47 例远处转移患者中,实验组占 27 例(57.4%),对照组占 20 例(42.6%)。局部和/或区域复发合并远处转移者中,实验组占 8 例(61.5%),对照组占 5 例(38.5%)。2 组患者的疾病进展特征相似,差异无统计学意义(P>0.05)。见表 2。

表 2 212 例匹配后患者的疾病进展特征比较

疾病进展特征	实验组	对照组	P	
复发	局部复发	5	3	0.710
	区域复发	4	3	
	局部和区域复发	1	0	
	合计	10	6	
远处转移	骨转移	11	7	0.847
	肺转移	7	5	
	肝转移	4	5	
	脑转移	0	0	
	多部位转移	5	3	
	合计	27	20	
转移和复发		8	5	0.833
总计		45	31	0.922

2.3 患者预后比较

实验组与对照组患者的 4 年 LRRFS 分别为 80.2%、92.5%, 4 年 OS 分别为 77.4%、84.0%, 4 年 DMFS 分别 68.9%、74.5%。实验组的 4 年 LRRFS、4 年 OS 低于对照组,差异有统计学意义 (P=0.008、0.043); 2 组 4 年 DMFS 比较,差异无统计学意义(P=0.273)。

2.4 预后多因素分析

多因素分析显示,GTV > 34.1 mL 是预后指标 LRRFS 的不良影响因素;GTV > 34.1 mL、N 分期晚和总分期为NA/B 期是预后指标 OS 的不良影响因素;N 分期晚和总分期为NA/B 期的患者远处转移发生率显著升高。见表 3。

3 讨论

2009 年 THAM I W 等^[4]报道,接受调强放射治疗的鼻咽癌患者中, T₁、T₂ 和 T₃ 不同分期者的肿瘤局部复发概率无显著差异。很多临床证据证明,调强放疗仅有 N 分期是鼻咽癌远处转移、总生存时间的影响因素,T 分期与鼻咽癌患者的预后并无显著相关性。本研究中,212 例倾向匹配后Ⅲ~Ⅳ A/B 期鼻咽癌患者预后多因素分析模型可以看出,T分期并不是3个生存终点指标的

影响因素	LRRFS				OS		DMFS		
	HR	95% CI	P	HR	95% CI	P	HR	95% CI	P
GTV	0.828	0.428 ~ 0.769	0.022	0.562	0.343 ~ 0.816	0.010	0.451	0.252 ~ 1.807	0.070
T 分期	3.703	0.472 ~29.043	0.215	-	-	0.311	1.215	0.793 ~ 2.342	0.373
N 分期	1.150	0.572 ~ 2.311	0.696	1.724	1.047 ~ 2.841	0.033	2.153	1.351 ~ 3.430	0.001
总分期	2.256	$0.253 \sim 20.090$	0.468	5.312	3.413 ~ 12.243	< 0.001	2.498	1.095 ~ 5.699	0.030
年龄	1.247	0.389 ~ 3.991	0.714	_	_	0.766	1.767	0.965 ~ 3.235	0.067
性别	4.231	0.553 ~ 32.447	0.167	_	_	0.090	1.101	0.552 ~ 2.197	0.785
KPS 评分	-	_	0.952	_	_	0.224	0.905	0.273 ~ 2.995	0.870

P值计算采用基于最大似然估计的向前逐步回归法。GTV:肿瘤体积; KPS:卡氏功能状态量表; LRRFS:无局部-区域进展 生存率; OS: 总生存率; DMFS: 无远处转移生存率; HR: 风险比率; 95% CI: 95% 置信区间。

影响因素。头颈部肿瘤局部区域复发是鼻咽癌患 者主要的疾病进展特征,既往研究[5]显示 N 分期、 治疗前后血浆 EB 病毒 DNA 负荷量均能提示远处 转移风险,但局部区域复发预测因素一直不足。

当前鼻咽癌的 T 分期主要是建立在肿瘤对 局部结构的侵犯上,缺乏一个可以量化的客观指 标,如 T, 期鼻咽癌患者常伴随有颅底骨质受侵 犯,然而颅底骨质受侵可以是轻微的骨质受侵或 较大体积颅底骨质受侵,甚至同一部位的不同受 侵程度也会使预后存在巨大差异[6]。2011年 CHEN L 等^[7]报道,鼻咽癌患者颅底骨质受侵程 度不同,可能会产生不同预后。临床实践显示,较 早的 T 分期伴有体积较大的肿瘤,较晚的 T 分期 也可以伴有肿瘤体积较小的情况,这些可能是 T 分期不能有效预测鼻咽癌患者预后的重要原 因。本研究发现, GTV 是预后指标 LRRFS 和 OS 的独立影响因素,小 GTV 患者具有较低的局部 和/或区域复发率(7.5%)、较高的总生存率 (84.0%), 这与相关报道[8]结果一致。

GTV 与肿瘤负荷呈线性相关,是最直接反映 肿瘤负荷的指标^[9]。GTV 较大患者的预后较差, 分析原因包括: ① GTV 越大,肿瘤组织细胞异型 性越大,这可能导致肿瘤辐射抵抗以及肿瘤细胞 和微环境改变,从而对放化疗的反应性较差;② GTV 大常与 T 分期较晚相关联,肿瘤侵犯的范围 越广泛,肿瘤距离视神经、脊髓、脑干的距离越近, 放疗计划的设计难度越大,导致疗效下降; ③ 体 积较大的肿瘤中心血供较差,常创造出更加有利 于乏氧细胞及 G。期细胞生长的环境,从而导致耐 放射性,可能需要更高放射剂量来控制肿瘤; ④ GTV巨大患者常预示着肿瘤存在时间更长且增 殖更快,往往伴随较早的远处转移。本研究多因 素分析结果显示, GTV > 34.1 mL 是 LRRFS 和 OS 的不良影响因素, N 分期晚是 OS 和 DMFS 的重要 不良影响因素, GTV 大合并 N 分期晚的鼻咽癌患

者需要提高治疗强度,临床医生可根据具体情况为 患者制定个体化治疗方案(如增加靶向药物、增加 辅助化疗及维持化疗、结合免疫治疗等)。

综上所述,本研究进一步证实,GTV和N分 期均为影响鼻咽癌患者预后的重要因素。采用倾 向匹配值法深入探讨 GTV 对Ⅲ~ IV A/B 期鼻咽 癌患者 LRRFS、OS 和 DMFS 的影响,可提高对局 部晚期鼻咽癌患者预后的预测水平,为个体化治 疗方案的选择提供参考依据。

参考文献

- [1] 潘建基. 鼻咽癌分期研究[J]. 中国癌症杂志, 2011, 12 (12): 901 - 905.
- Johnson C R, Thames H D, Huang D T, et al. The tumor voluem and clonogen number relationship: Tumor control predictions based upon tumor volume estimates derived from computed tomography [J]. Int J Radiat Oncol, 1995, 33(2): 281 - 287.
- SZE W M, LEE A W, YAU T K, et al. Primary tumor volume of nasopharyngeal carcinoma; prognostic significance for local control [J]. Int J Radiat Oncol Biol Phys, 2004, 59(1): 21 -
- [4] THAM I W, HEE S W, YEO R M, et al. Treatment of nasopharyngeal carcinoma using intensity-modulated radiotherapythe national cancer centre Singapore experience [J]. Int J Radiat Oncol Biol Phys, 2009, 75(5): 1481 - 1486.
- ZHOU X, YANG Y Q, OU X M, et al. Interplay of tumor spread, volume and Epstein-Barr virus DNA in nasopharyngeal carcinoma; feasibility of an integrative risk stratification scheme [J]. J Cancer, 2018, 9(22): 4271 - 4278.
- 刘丽. 局部晚期鼻咽癌调强放疗脑干限量可以超过 54Gy-105 例斜坡受侵鼻咽癌脑干剂量统计及三年随访分 析[D]. 泸州: 西南医科大学, 2017.
- [7] CHEN L, LIU L Z, MAO Y P, et al. Grading of MRI-detected skull-base invasion in nasopharyngeal carcinoma and its prognostic value [J]. Head Neck, 2011, 33(9): 1309 - 1314.
- CHEN C, FEI Z, HUANG C, et al. Prognostic value of tumor burden in nasopharyngeal carcinoma[J]. Cancer Manag Res, 2018, 10: 3169 - 3175.
- [9] LIN Y H, HUANG T L, CHIEN C Y, et al. Pretreatment prognostic factors of survival and late toxicities for patients with nasopharyngeal carcinoma treated by simultaneous integrated boost intensity-modulated radiotherapy [J]. Radiat Oncol, 2018, 13 (1): 45-53.