Impact of Coronavirus Disease 2019 on long-term renal function in patients with chronic kidney disease undergoing no renal replacement therapy
-
摘要:目的
探讨新型冠状病毒感染(COVID-19)对未接受肾脏替代治疗的慢性肾脏病(CKD)患者肾功能的长期影响。
方法选取贵州航天医院2022年12月—2023年3月收治的确诊COVID-19时估算肾小球滤过率(eGFR) < 60 mL/(min·1.73 m2)的39例CKD患者纳入COVID-19组, 另选取2021年9—12月收治的未患COVID-19的40例CKD患者纳入对照组。比较2组患者的eGFR变化情况,基于混合线性模型分析COVID-19组eGFR水平随时间的变化。
结果COVID-19组患者的基线eGFR水平和随访1、3个月时的eGFR水平与对照组比较,差异均无统计学意义(P>0.05); 随访1年时, COVID-19组患者的eGFR水平低于对照组,差异有统计学意义(P < 0.05)。混合线性模型分析结果显示, COVID-19组患者发生COVID-19后1年内eGFR水平下降1.84 mL/(min·1.73 m2), 相当于较基线水平下降4.62%, 其中糖尿病患者的eGFR水平下降幅度最大(7.45%)。
结论未接受肾脏替代治疗的CKD患者发生COVID-19后1年内eGFR大幅下降,肾功能恶化加剧,应接受密切的长期肾功能监测和及时干预。
Abstract:ObjectiveTo investigate the impact of Coronavirus Disease 2019 (COVID-19) on long-term renal function in patients with chronic kidney disease (CKD) who received no renal replacement therapy.
MethodsThirty-nine CKD patients with an estimated glomerular filtration rate (eGFR) < 60 mL/(min·1.73 m2) at the time of COVID-19 diagnosis, admitted to Guizhou Aerospace Hospital from December 2022 to March 2023, were enrolled in the COVID-19 group. Additionally, 40 CKD patients without COVID-19 from September to December 2021, were included in control group. Changes in eGFR were compared between the two groups, and the temporal trend of eGFR in the COVID-19 group was analyzed using a mixed-effects linear model.
ResultsNo statistically significant differences were observed in eGFR levels at baseline, 1- and 3-month of follow-up between the COVID-19 and control groups (P>0.05). However, at 1 year of follow-up, the eGFR level in the COVID-19 group was significantly lower than that in the control group (P < 0.05). The mixed-effects linear model analysis revealed a decrease in eGFR by 1.84 mL/(min·1.73 m2) within 1 year of COVID-19 onset in the COVID-19 group, which inclined 4.62% from baseline, with the most significant decline (7.45%) observed among diabetic patients.
ConclusionPatients with CKD who have not undergone renal replacement therapy experience a substantial decline in eGFR and worsened renal function within 1 year of COVID-19, necessitating close long-term renal function monitoring and timely interventions.
-
-
表 1 2组患者一般资料比较[n(%)][M(P25, P75)]
指标 分类 COVID-19组(n=39) 对照组(n=40) χ2/U P 性别 男 24(61.54) 25(62.50) 0.008 0.930 女 15(38.46) 15(37.50) 年龄/岁 77.00(64.00, 82.00) 75.50(63.25, 80.75) -0.628 0.530 基础疾病 糖尿病 12(30.77) 10(25.00) 0.327 0.567 高血压 29(74.36) 30(75.00) 0.004 0.948 心血管疾病 14(35.90) 12(30.00) 0.311 0.577 COPD 6(15.38) 5(12.50) 0.137 0.711 脑血管病 16(41.03) 15(37.50) 0.103 0.748 肿瘤 5(12.82) 5(12.50) 0.002 0.966 疫苗接种 有 15(38.46) 20(50.00) 1.065 0.302 无 24(61.54) 20(50.00) COPD: 慢性阻塞性肺疾病。 表 2 2组患者eGFR水平变化情况比较[M(P25, P75)]
mL/(min·1.73 m2) 组别 n 基线 随访1个月时 随访3个月时 随访12个月时 对照组 40 47.01(32.82, 52.68) 46.93(32.74, 52.61) 46.75(32.58, 52.42) 45.99(31.93, 51.60) COVID-19组 39 43.45(28.75, 48.70) 43.34(28.61, 48.54) 43.12(28.32, 48.21) 41.48(26.50, 47.04)* eGFR: 估算肾小球滤过率。与对照组比较, * P < 0.05。 表 3 COVID-19组eGFR的混合线性模型分析结果
mL/(min·1.73 m2) 样本类型 基线预测eGFR(模型截距) eGFR月度变化 eGFR年度变化 较基线下降幅度/% P 整体(n=39) 39.80 -0.15 -1.84 4.62 < 0.05 糖尿病患者(n=12) 37.85 -0.24 -2.82 7.45 < 0.05 非糖尿病患者(n=27) 40.66 -0.12 -1.41 3.45 < 0.05 男性(n=24) 39.15 -0.18 -2.18 5.56 < 0.05 女性(n=15) 40.84 -0.11 -1.30 3.19 < 0.05 eGFR年度变化=eGFR月度变化×12。 -
[1] WIERSINGA W J, RHODES A, CHENG A C, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019(COVID-19): a review[J]. JAMA, 2020, 324(8): 782-793. doi: 10.1001/jama.2020.12839
[2] GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032
[3] OZTURK S, TURGUTALP K, ARICI M, et al. Mortality analysis of COVID-19 infection in chronic kidney disease, haemodialysis and renal transplant patients compared with patients without kidney disease: a nationwide analysis from Turkey[J]. Nephrol Dial Transplant, 2020, 35(12): 2083-2095. doi: 10.1093/ndt/gfaa271
[4] KANG S H, KIM S W, KIM A Y, et al. Association between chronic kidney disease or acute kidney injury and clinical outcomes in COVID-19 patients[J]. J Korean Med Sci, 2020, 35(50): e434. doi: 10.3346/jkms.2020.35.e434
[5] BOWE B, XIE Y, XU E, et al. Kidney outcomes in long COVID[J]. J Am Soc Nephrol, 2021, 32(11): 2851-2862. doi: 10.1681/ASN.2021060734
[6] CARRIAZO S, MAS-FONTAO S, SEGHERS C, et al. Increased 1-year mortality in haemodialysis patients with COVID-19: a prospective, observational study[J]. Clin Kidney J, 2022, 15(3): 432-441. doi: 10.1093/ckj/sfab248
[7] CHENG Y C, LUO R, WANG K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19[J]. Kidney Int, 2020, 97(5): 829-838. doi: 10.1016/j.kint.2020.03.005
[8] NUGENT J, AKLILU A, YAMAMOTO Y, et al. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and without COVID-19[J]. JAMA Netw Open, 2021, 4(3): e211095. doi: 10.1001/jamanetworkopen.2021.1095
[9] ATIQUZZAMAN M, THOMPSON J R, SHAO S, et al. Long-term effect of COVID-19 infection on kidney function among COVID-19 patients followed in post-COVID-19 recovery clinics in British Columbia, Canada[J]. Nephrol Dial Transplant, 2023, 38(12): 2816-2825. doi: 10.1093/ndt/gfad121
[10] KROLEWSKI A S, NIEWCZAS M A, SKUPIEN J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria[J]. Diabetes Care, 2014, 37(1): 226-234. doi: 10.2337/dc13-0985
[11] WANNER C, HEERSPINK H J L, ZINMAN B, et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial[J]. J Am Soc Nephrol, 2018, 29(11): 2755-2769. doi: 10.1681/ASN.2018010103
[12] NOJIMA J, MEGURO S, OHKAWA N, et al. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(9): 746-754. doi: 10.2183/pjab.93.046
[13] TANGRI N, STEVENS L A, GRIFFITH J, et al. A predictive model for progression of chronic kidney disease to kidney failure[J]. JAMA, 2011, 305(15): 1553-1559. doi: 10.1001/jama.2011.451
[14] PAN X W, XU D, ZHANG H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis[J]. Intensive Care Med, 2020, 46(6): 1114-1116. doi: 10.1007/s00134-020-06026-1
[15] BUONAGURO F M, ASCIERTO P A, MORSE G D, et al. Covid-19: time for a paradigm change[J]. Rev Med Virol, 2020, 30(5): e2134. doi: 10.1002/rmv.2134
[16] HENDERSON L A, CANNA S W, SCHULERT G S, et al. On the alert for cytokine storm: immunopathology in COVID-19[J]. Arthritis Rheumatol, 2020, 72(7): 1059-1063. doi: 10.1002/art.41285
[17] LI H, LIU L, ZHANG D Y, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses[J]. Lancet, 2020, 395(10235): 1517-1520. doi: 10.1016/S0140-6736(20)30920-X
[18] TANG N, BAI H, CHEN X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy[J]. J Thromb Haemost, 2020, 18(5): 1094-1099. doi: 10.1111/jth.14817
[19] TERPOS E, NTANASIS-STATHOPOULOS I, ELALAMY I, et al. Hematological findings and complications of COVID-19[J]. Am J Hematol, 2020, 95(7): 834-847. doi: 10.1002/ajh.25829
[20] JANSEN J, REIMER K C, NAGAI J S, et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids[J]. Cell Stem Cell, 2022, 29(2): 217-231. e8. doi: 10.1016/j.stem.2021.12.010