Research progress on histone methylation modification in aging cardiovascular disease
-
摘要:
关注心肌衰老、瓣膜改变、心脏传导系统改变及血管老化等心脏结构和功能的改变,对研究衰老相关心血管疾病的治疗方法至关重要。组蛋白甲基化修饰参与调控基因表达,与衰老性心血管疾病的发生发展密切相关。本文就组蛋白甲基化修饰在心脏结构和功能改变中的作用进行综述,为衰老性心血管病变的研究提供新的理论依据。
Abstract:Changes in cardiac structure and function such as myocardial aging, valve alterations, alterations in the cardiac conduction system and vascular aging are crucial for studying therapeutic methods for age-related cardiovascular diseases. Histone methylation modification is involved in the regulation of gene expression and closely related to the occurrence and development of age-related cardiovascular diseases. This paper provided a comprehensive review on the role of histone methylation modification in cardiac structural and functional changes, providing new theoretical basis for age-related cardiovascular diseases.
-
Keywords:
- histone methylation modification /
- myocardial aging /
- valves /
- cardiac conduction system /
- vascular aging /
- aging
-
-
[1] PANENI F, DIAZ C C, LIBBY P, et al. The aging cardiovascular system: understanding it at the cellular and clinical levels[J]. J Am Coll Cardiol, 2017, 69(15): 1952-1967. doi: 10.1016/j.jacc.2017.01.064
[2] MORAN A, GU D F, ZHAO D, et al. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-china[J]. Circ Cardiovasc Qual Outcomes, 2010, 3(3): 243-252. doi: 10.1161/CIRCOUTCOMES.109.910711
[3] RUIZ-MEANA M, BOU-TEEN D, FERDINANDY P, et al. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function[J]. Cardiovasc Res, 2020, 116(11): 1835-1849. doi: 10.1093/cvr/cvaa132
[4] 洪浩, 李雨濛, 孟祥民, 等. 组蛋白甲基化与糖尿病心肌病[J]. 生理学报, 2022, 74(3): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXU202203012.htm [5] HAN S, BRUNET A. Histone methylation makes its mark on longevity[J]. Trends Cell Biol, 2012, 22(1): 42-49. doi: 10.1016/j.tcb.2011.11.001
[6] LEON K E, BUJ R, LESKO E, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A[J]. J Cell Biol, 2021, 220(8): e202008101. doi: 10.1083/jcb.202008101
[7] LYU G L, GUAN Y T, ZHANG C, et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging[J]. Nat Commun, 2018, 9(1): 2560. doi: 10.1038/s41467-018-04994-z
[8] VANCHIN B, SOL M, GJALTEMA R A F, et al. Reciprocal regulation of endothelial-mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease[J]. Sci Rep, 2021, 11(1): 17764. doi: 10.1038/s41598-021-97127-4
[9] HAN X B, SUN Z J. Epigenetic regulation of KL (klotho) via H3K27me3 (histone 3 lysine[K]27 trimethylation) in renal tubule cells[J]. Hypertension, 2020, 75(5): 1233-1241. doi: 10.1161/HYPERTENSIONAHA.120.14642
[10] CAI S D, WANG P X, XIE T T, et al. Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin[J]. Pharmacol Res, 2020, 161: 105104. doi: 10.1016/j.phrs.2020.105104
[11] LIU X P, CHEN J, ZHANG B F, et al. KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway[J]. Cell Signal, 2019, 64: 109415. doi: 10.1016/j.cellsig.2019.109415
[12] MICHALAK E M, BURR M L, BANNISTER A J, et al. The roles of DNA, RNA and histone methylation in ageing and cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 573-589.
[13] KLOSE R J, ZHANG Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nat Rev Mol Cell Biol, 2007, 8(4): 307-318. doi: 10.1038/nrm2143
[14] YUAN J, CHANG S Y, YIN S G, et al. Two conserved epigenetic regulators prevent healthy ageing[J]. Nature, 2020, 579(7797): 118-122. doi: 10.1038/s41586-020-2037-y
[15] LU T, PAN Y, KAO S Y, et al. Gene regulation and DNA damage in the ageing human brain[J]. Nature, 2004, 429(6994): 883-891. doi: 10.1038/nature02661
[16] SANGARALINGHAM S J, HUNTLEY B K, MARTIN F L, et al. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide[J]. Hypertension, 2011, 57(2): 201-207. doi: 10.1161/HYPERTENSIONAHA.110.160796
[17] MATHIYALAGAN P, CHANG L S, DU X J, et al. Cardiac ventricular chambers are epigenetically distinguishable[J]. Cell Cycle, 2010, 9(3): 612-617. doi: 10.4161/cc.9.3.10612
[18] LI H B, HASTINGS M H, RHEE J, et al. Targeting age-related pathways in heart failure[J]. Circ Res, 2020, 126(4): 533-551. doi: 10.1161/CIRCRESAHA.119.315889
[19] GREER E L, SHI Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. doi: 10.1038/nrg3173
[20] MARON B J, MARON M S. Hypertrophic cardiomyopathy[J]. Lancet, 2013, 381(9862): 242-255. doi: 10.1016/S0140-6736(12)60397-3
[21] ZHANG Q J, CHEN H Z, WANG L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice[J]. J Clin Invest, 2011, 121(6): 2447-2456. doi: 10.1172/JCI46277
[22] YU S, LI Y H, ZHAO H W, et al. The histone demethylase JMJD1C regulates CAMKK2-AMPK signaling to participate in cardiac hypertrophy[J]. Front Physiol, 2020, 11: 539. doi: 10.3389/fphys.2020.00539
[23] WATANABE S, HORIE T, NAGAO K, et al. Cardiac-specific inhibition of kinase activity in calcium/calmodulin-dependent protein kinase kinase-β leads to accelerated left ventricular remodeling and heart failure after transverse aortic constriction in mice[J]. PLoS One, 2014, 9(9): e108201. doi: 10.1371/journal.pone.0108201
[24] BRETHERTON R, BUGG D, OLSZEWSKI E, et al. Regulators of cardiac fibroblast cell state[J]. Matrix Biol, 2020, 91/92: 117-135. doi: 10.1016/j.matbio.2020.04.002
[25] PAPAIT R, SERIO S, PAGIATAKIS C, et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy[J]. Circulation, 2017, 136(13): 1233-1246. doi: 10.1161/CIRCULATIONAHA.117.028561
[26] YU L M, YANG G, WENG X Y, et al. Histone methyltransferase SET1 mediates angiotensin Ⅱ-induced endothelin-1 transcription and cardiac hypertrophy in mice[J]. Arterioscler Thromb Vasc Biol, 2015, 35(5): 1207-1217. doi: 10.1161/ATVBAHA.115.305230
[27] WANG B, TAN Y, ZHANG Y K, et al. Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression[J]. Exp Mol Med, 2022, 54(12): 2175-2187. doi: 10.1038/s12276-022-00904-y
[28] NGUYEN A T, XIAO B, NEPPL R L, et al. DOT1L regulates dystrophin expression and is critical for cardiac function[J]. Genes Dev, 2011, 25(3): 263-274. doi: 10.1101/gad.2018511
[29] TRAN T A, ZHANG Q J, WANG L, et al. Inhibition of Jumonji demethylases reprograms severe dilated cardiomyopathy and prolongs survival[J]. J Biol Chem, 2022, 298(2): 101515. doi: 10.1016/j.jbc.2021.101515
[30] 曾洁明, 陈智超. 老年退行性心脏瓣膜病患者合并心力衰竭特点分析[J]. 心血管康复医学杂志, 2015, 24(1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGK201501017.htm [31] MOLNÁR A Á, PÁSZTOR D, MERKELY B. Cellular senescence, aging and non-aging processes in calcified aortic valve Stenosis: from bench-side to bedside[J]. Cells, 2022, 11(21): 3389. doi: 10.3390/cells11213389
[32] GARG V, MUTH A N, RANSOM J F, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056): 270-274. doi: 10.1038/nature03940
[33] XIE K J, ZENG J X, WEN L M, et al. Abnormally elevated EZH2-mediated H3K27me3 enhances osteogenesis in aortic valve interstitial cells by inhibiting SOCS3 expression[J]. Atherosclerosis, 2023, 364: 1-9. doi: 10.1016/j.atherosclerosis.2022.11.017
[34] MAJUMDAR U, MANIVANNAN S, BASU M, et al. Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling[J]. Sci Adv, 2021, 7(6): eabe3706. doi: 10.1126/sciadv.abe3706
[35] HADJI F, BOULANGER M C, GUAY S P, et al. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1[J]. Circulation, 2016, 134(23): 1848-1862. doi: 10.1161/CIRCULATIONAHA.116.023116
[36] YU C, XIONG C X, TANG J H, et al. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression[J]. Theranostics, 2021, 11(6): 2706-2721. doi: 10.7150/thno.48679
[37] OSER M G, SABET A H, GAO W H, et al. The KDM5A/RBP2 histone demethylase represses NOTCH signaling to sustain neuroendocrine differentiation and promote small cell lung cancer tumorigenesis[J]. Genes Dev, 2019, 33(23/24): 1718-1738.
[38] JEONG G Y, PARK M K, CHOI H J, et al. NSD3-induced methylation of H3K36 activates NOTCH signaling to drive breast tumor initiation and metastatic progression[J]. Cancer Res, 2021, 81(1): 77-90. doi: 10.1158/0008-5472.CAN-20-0360
[39] YANG D, XU P, SU H B, et al. The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis[J]. Cell Death Dis, 2022, 13(1): 60. doi: 10.1038/s41419-021-04365-5
[40] MOSLEHI J, DEPINHO R A, SAHIN E. Telomeres and mitochondria in the aging heart[J]. Circ Res, 2012, 110(9): 1226-1237. doi: 10.1161/CIRCRESAHA.111.246868
[41] MACÍAS Á, DÍAZ-LARROSA J J, BLANCO Y, et al. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome[J]. Cardiovasc Res, 2022, 118(2): 503-516. doi: 10.1093/cvr/cvab055
[42] HALL A W, CHAFFIN M, ROSELLI C, et al. Epigenetic analyses of human left atrial tissue identifies gene networks underlying atrial fibrillation[J]. Circ Genom Precis Med, 2020, 13(6): e003085.
[43] PURSANI V, BHARTIYA D, TANAVDE V, et al. Transcriptional activator DOT1L putatively regulates human embryonic stem cell differentiation into the cardiac lineage[J]. Stem Cell Res Ther, 2018, 9(1): 97. doi: 10.1186/s13287-018-0810-8
[44] XIAO Z Z, XIE Y, HUANG F Z, et al. microRNA-205-5p plays a suppressive role in the high-fat diet-induced atrial fibrosis through regulation of the EHMT2/IGFBP3 axis[J]. Genes Nutr, 2022, 17(1): 11. doi: 10.1186/s12263-022-00712-z
[45] DONATO A J, MORGAN R G, WALKER A E, et al. Cellular and molecular biology of aging endothelial cells[J]. J Mol Cell Cardiol, 2015, 89(Pt B): 122-135. http://d.wanfangdata.com.cn/periodical/e63e638965c3cfe6046ffb77923744bb
[46] LIU H, CHEN T S, LI N, et al. Role of SIRT3 in Angiotensin Ⅱ-induced human umbilical vein endothelial cells dysfunction[J]. BMC Cardiovasc Disord, 2015, 15: 81. doi: 10.1186/s12872-015-0075-4
[47] PARK S H, BELCASTRO E, HASAN H, et al. Angiotensin Ⅱ-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins[J]. Cardiovasc Diabetol, 2021, 20(1): 65. doi: 10.1186/s12933-021-01252-3
[48] LIAO Y F, GOU L N, CHEN L L, et al. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory[J]. Free Radic Biol Med, 2018, 115: 383-394. doi: 10.1016/j.freeradbiomed.2017.12.017
[49] OHTANI K, VLACHOJANNIS G J, KOYANAGI M, et al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells[J]. Circ Res, 2011, 109(11): 1219-1229. doi: 10.1161/CIRCRESAHA.111.247304
[50] VASCONEZ A E, JANETZKO P, OO J A, et al. The histone demethylase Jarid1b mediates angiotensin Ⅱ-induced endothelial dysfunction by controlling the 3'UTR of soluble epoxide hydrolase[J]. Acta Physiol, 2019, 225(1): e13168. doi: 10.1111/apha.13168
[51] KARNEWAR S, NEELI P K, PANUGANTI D, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt A): 1115-1128.
计量
- 文章访问数: 149
- HTML全文浏览量: 40
- PDF下载量: 29