肿瘤坏死因子-α在恶性肿瘤中的作用及意义

王郑林, 汤杰, 陈佳伟, 刘子祥, 周少波

王郑林, 汤杰, 陈佳伟, 刘子祥, 周少波. 肿瘤坏死因子-α在恶性肿瘤中的作用及意义[J]. 实用临床医药杂志, 2023, 27(4): 138-143. DOI: 10.7619/jcmp.20223338
引用本文: 王郑林, 汤杰, 陈佳伟, 刘子祥, 周少波. 肿瘤坏死因子-α在恶性肿瘤中的作用及意义[J]. 实用临床医药杂志, 2023, 27(4): 138-143. DOI: 10.7619/jcmp.20223338
WANG Zhenglin, TANG Jie, CHEN Jiawei, LIU Zixiang, ZHOU Shaobo. The role and significance of tumor necrosis factor-α in malignant tumor[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 138-143. DOI: 10.7619/jcmp.20223338
Citation: WANG Zhenglin, TANG Jie, CHEN Jiawei, LIU Zixiang, ZHOU Shaobo. The role and significance of tumor necrosis factor-α in malignant tumor[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 138-143. DOI: 10.7619/jcmp.20223338

肿瘤坏死因子-α在恶性肿瘤中的作用及意义

基金项目: 

安徽省卫生健康委科研项目 AHWJ2021a012

安徽高校自然科学研究项目 KJ2020A0564

蚌埠医学院自然科学重点项目 2021byzd197

详细信息
    通讯作者:

    周少波, E-mail: zhoushaobodoctor@sina.com

  • 中图分类号: R730.5;R446.9

The role and significance of tumor necrosis factor-α in malignant tumor

  • 摘要:

    肿瘤坏死因子-α(TNF-α)是一种主要由体内单核巨噬细胞产生的炎症因子,可以直接杀伤肿瘤细胞,在生理剂量下对正常细胞几乎没有毒性作用。TNF-α通过多种机制在肿瘤细胞的增殖、侵袭、转移及凋亡等过程中发挥重要作用,其既可以诱导肿瘤细胞凋亡,又可以促进肿瘤细胞的生长和侵袭。本文阐述TNF-α与恶性肿瘤相关的信号途径和TNF-α在恶性肿瘤中的双重作用及其在肿瘤治疗方面的应用现状,旨在为临床开发TNF-α相关抗癌药物提供新思路。

    Abstract:

    Tumor necrosis factor-α(TNF-α) is an inflammatory factor mainly produced by mononuclear macrophages in the body, which can directly kill tumor cells and has almost no toxic effect on normal cells at physiological doses. TNF-α plays an important role in various stages of tumor development, such as tumor cell proliferation, invasion, metastasis and apoptosis, through a variety of mechanisms. The factor not only promotes the apoptosis of tumor cell, but also promotes the growth and invasion of tumor cells. In this paper, the signaling pathways related to TNF-α in malignant tumors and its dual roles in malignant tumors and application in tumor treatment were elaborated. These findings may provide new ideas for the clinical development of anti-cancer drugs related to TNF-α.

  • [1]

    ATRETKHANY K S N, GOGOLEVA V S, DRUTSKAYA M S, et al. Distinct modes of TNF signaling through its two receptors in health and disease[J]. J Leukoc Biol, 2020, 107(6): 893-905. doi: 10.1002/JLB.2MR0120-510R

    [2]

    BALKWILL F. Tumour necrosis factor and cancer[J]. Nat Rev Cancer, 2009, 9(5): 361-371. doi: 10.1038/nrc2628

    [3]

    SINGH N, BABY D, RAJGURU J P, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121-126. doi: 10.4103/aam.aam_56_18

    [4]

    CIEBIERA M, WŁODARCZYK M, ZGLICZYNSKA M, et al. The role of tumor necrosis factor α in the biology of uterine fibroids and the related symptoms[J]. Int J Mol Sci, 2018, 19(12): 3869. doi: 10.3390/ijms19123869

    [5]

    PROBERT L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects[J]. Neuroscience, 2015, 302: 2-22. doi: 10.1016/j.neuroscience.2015.06.038

    [6]

    KALLIOLIAS G D, IVASHKIV L B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies[J]. Nat Rev Rheumatol, 2016, 12(1): 49-62. doi: 10.1038/nrrheum.2015.169

    [7]

    QU R Z, CHEN X M, HU J, et al. Ghrelin protects against contact dermatitis and psoriasiform skin inflammation by antagonizing TNF-α/NF-κB signaling pathways[J]. Sci Rep, 2019, 9(1): 1348. doi: 10.1038/s41598-018-38174-2

    [8]

    BAKR A G, EL-BAHRAWY A H, TAHA H H, et al. Diosmin enhances the anti-angiogenic activity of sildenafil and pentoxifylline against hepatopulmonary syndrome via regulation of TNF-α/VEGF, IGF-1/PI3K/AKT, and FGF-1/ANG-2 signaling pathways[J]. Eur J Pharmacol, 2020, 873: 173008. doi: 10.1016/j.ejphar.2020.173008

    [9]

    LI P, GAN Y B, XU Y, et al. The inflammatory cytokine TNF-α promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017, 7: 42938. doi: 10.1038/srep42938

    [10]

    GARCIA-ECHEVERRIA C, SELLERS W R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer[J]. Oncogene, 2008, 27(41): 5511-5526. doi: 10.1038/onc.2008.246

    [11]

    BOYE K, GROTTERØD I, AASHEIM H C, et al. Activation of NF-kappaB by extracellular S100A4: analysis of signal transduction mechanisms and identification of target genes[J]. Int J Cancer, 2008, 123(6): 1301-1310. doi: 10.1002/ijc.23617

    [12] 王丽, 王毅楠, 吴英良, 等. 在无血清条件下TNFα通过Pkn1和MAPK-Erk通路对FBJ细胞生长的调控作用[J]. 沈阳药科大学学报, 2009, 26(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYD200902018.htm
    [13]

    PARK H B, BAEK K H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188736. doi: 10.1016/j.bbcan.2022.188736

    [14] 高世勇, 李丹. 肿瘤坏死因子与癌症相关研究进展[J]. 中国药理学通报, 2020, 36(9): 1209-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202009006.htm
    [15]

    BENOOT T, PICCIONI E, DE RIDDER K, et al. TNFα and immune checkpoint inhibition: friend or foe for lung cancer[J]. Int J Mol Sci, 2021, 22(16): 8691. doi: 10.3390/ijms22168691

    [16]

    LIU Y M, GAO Y, LIN T. Expression of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) in non-small cell lung cancer and its relationship with the occurrence and prognosis of cancer pain[J]. Ann Palliat Med, 2021, 10(12): 12759-12766. doi: 10.21037/apm-21-3471

    [17]

    YEHIA R, SCHAALAN M, ABDALLAH D M, et al. Impact of TNF-alpha gene polymorphisms on pancreatic and non-small cell lung cancer-induced cachexia in adult egyptian patients: a focus on pathogenic trajectories[J]. Front Oncol, 2021, 11: 783231. doi: 10.3389/fonc.2021.783231

    [18]

    LIN A Q, ZHANG H M, MENG H, et al. TNF-alpha pathway alternation predicts survival of immune checkpoint inhibitors in non-small cell lung cancer[J]. Front Immunol, 2021, 12: 667875. doi: 10.3389/fimmu.2021.667875

    [19] 张雪, 董晓平, 管雅喆, 等. 女性乳腺癌流行病学趋势及危险因素研究进展[J]. 肿瘤防治研究, 2021, 48(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLFY202101017.htm
    [20]

    MERCOGLIANO M F, BRUNI S, ELIZALDE P V, et al. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer[J]. Front Oncol, 2020, 10: 584. doi: 10.3389/fonc.2020.00584

    [21]

    ZHAO Y, NICHOLS J E, VALDEZ R, et al. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1. 4[J]. Mol Endocrinol, 1996, 10(11): 1350-1357.

    [22]

    RIVAS M A, CARNEVALE R P, PROIETTI C J, et al. TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways[J]. Exp Cell Res, 2008, 314(3): 509-529. doi: 10.1016/j.yexcr.2007.10.005

    [23]

    NAGY P, FRIEDLÄNDER E, TANNER M, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line[J]. Cancer Res, 2005, 65(2): 473-482. doi: 10.1158/0008-5472.473.65.2

    [24]

    TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-324. doi: 10.1038/nri.2017.142

    [25]

    RINGELHAN M, PFISTER D, O'CONNOR T, et al. The immunology of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3): 222-232. doi: 10.1038/s41590-018-0044-z

    [26]

    MICHEAU O, TSCHOPP J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114(2): 181-190. doi: 10.1016/S0092-8674(03)00521-X

    [27]

    EHLKEN H, KRISHNA-SUBRAMANIAN S, OCHOA-CALLEJERO L, et al. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout[J]. Cell Death Differ, 2014, 21(11): 1721-1732. doi: 10.1038/cdd.2014.83

    [28]

    VAN T M, POLYKRATIS A, STRAUB B K, et al. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis[J]. J Clin Invest, 2017, 127(7): 2662-2677. doi: 10.1172/JCI92508

    [29]

    KNIGHT B, YEOH G C, HUSK K L, et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice[J]. J Exp Med, 2000, 192(12): 1809-1818. doi: 10.1084/jem.192.12.1809

    [30]

    TIEGS G, HORST A K. TNF in the liver: targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44(4): 445-459. doi: 10.1007/s00281-022-00910-2

    [31]

    TAN W L, LUO X, LI W D, et al. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma[J]. EBioMedicine, 2019, 40: 446-456. doi: 10.1016/j.ebiom.2018.12.047

    [32]

    SUGANUMA M, WATANABE T, SUEOKA E, et al. Role of TNF-α-inducing protein secreted by Helicobacter pylori as a tumor promoter in gastric cancer and emerging preventive strategies[J]. Toxins, 2021, 13(3): 181. doi: 10.3390/toxins13030181

    [33]

    ZHAO Y, WANG J W, TANAKA T, et al. Association between TNF-α and IL-1β genotypes vs Helicobacter pylori infection in Indonesia[J]. World J Gastroenterol, 2013, 19(46): 8758-8763. doi: 10.3748/wjg.v19.i46.8758

    [34] 许清, 周彬. 调强放疗在晚期胃癌根治术后淋巴结转移患者中的临床效果及对炎症因子、免疫功能的影响研究[J]. 川北医学院学报, 2019, 34(6): 756-759. https://www.cnki.com.cn/Article/CJFDTOTAL-NOTH201906026.htm
    [35]

    CUI X Y, ZHANG H, CAO A N, et al. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3[J]. J Cancer, 2020, 11(7): 1800-1807. doi: 10.7150/jca.39562

    [36]

    HU H, YIN J, WANG M, et al. GX1 targeting delivery of rmhTNFα evaluated using multimodality imaging[J]. Int J Pharm, 2014, 461(1/2): 181-191.

    [37]

    LU X M, CHENG C, WANG G B, et al. Synergistic enhancement of cancer therapy using a combination of fusion protein MG7-scFv/SEB and tumor necrosis factor alpha[J]. Protein Pept Lett, 2013, 20(4): 467-472.

    [38]

    SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654

    [39]

    TIETZ A B, MALO A, DIEBOLD J, et al. Gene deletion of MK2 inhibits TNF-alpha and IL-6 and protects against cerulein-induced pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): G1298-G1306. doi: 10.1152/ajpgi.00530.2005

    [40]

    TIEDJE C, RONKINA N, TEHRANI M, et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation[J]. PLoS Genet, 2012, 8(9): e1002977. doi: 10.1371/journal.pgen.1002977

    [41] 余钧辉, 孙学军, 郑见宝, 等. TNF-α通过Wnt/β-catenin信号通路促进结肠癌细胞的增殖[J]. 西安交通大学学报: 医学版, 2018, 39(4): 504-508. https://www.cnki.com.cn/Article/CJFDTOTAL-XAYX201804013.htm
    [42]

    LI H, ZHONG A J, LI S, et al. The integrated pathway of TGFβ/Snail with TNF-α/NF-κB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis[J]. Sci Rep, 2017, 7(1): 4915. doi: 10.1038/s41598-017-05280-6

    [43]

    SHEN J, LI Z J, LI L F, et al. Vascular-targeted TNF-α and IFN-γ inhibits orthotopic colorectal tumor growth[J]. J Transl Med, 2016, 14(1): 187. doi: 10.1186/s12967-016-0944-3

    [44]

    LI K, SHI M L, QIN S K. Current status and study progress of recombinant human endostatin in cancer treatment[J]. Oncol Ther, 2018, 6(1): 21-43. doi: 10.1007/s40487-017-0055-1

    [45]

    TUNG Y T, HUANG P W, CHOU Y C, et al. Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16[J]. Oncotarget, 2015, 6(12): 10222-10238. doi: 10.18632/oncotarget.3390

    [46] 秦叔逵, 马军, 李进, 等. 重组改构人肿瘤坏死因子治疗恶性胸、腹腔积液的临床应用专家共识[J]. 临床肿瘤学杂志, 2018, 23(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LCZL201801014.htm
计量
  • 文章访问数:  1281
  • HTML全文浏览量:  872
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-02-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭