Effect of essential fatty acids by MCP-1/TGF-β1/COL-Ⅰ pathways for human kidney 2 cells with sugar damage
-
摘要:目的
探讨必需脂肪酸经单核细胞趋化蛋白-1(MCP-1)/转化生长因子β1(TGF-β1)/Ⅰ型胶原蛋白(COL-Ⅰ)信号通路对高浓度葡萄糖诱导的人肾小管上皮细胞(HK-2)的作用和机制。
方法通过四甲基偶氮唑盐(MTT)法建立糖损伤HK-2细胞模型,采用不同浓度α-亚麻酸(ALA)/亚油酸(LA)干预后,采用酶联免疫吸附法(ELISA)测定糖损伤HK-2细胞上清液MCP-1、TGF-β1和COL-Ⅰ的蛋白表达量,采用逆转录聚合酶链反应(RT-PCR)测定糖损伤HK-2细胞 MCP-1 、 TGF-β1 和COL-ⅠmRNA的表达。
结果给予糖损伤HK-2细胞50 μmol/L ALA、LA以及终浓度为50 μmol/L、比例1 ∶ 4的ALA/LA混合液干预48 h后, MCP-1mRNA和MCP-1蛋白表达量降低,差异有统计学意义(P < 0.05); 给予糖损伤细胞100 μmol/L ALA和LA作用48 h后, TGF-β1mRNA和TGF-β1蛋白表达量降低,差异有统计学意义(P < 0.05); 给予糖损伤HK-2细胞100 μmol/L ALA、50 μmol/L LA以及终浓度为50 μmol/L、比例为1 ∶ 4的ALA/LA混合液干预48 h后, COL-ⅠmRNA和COL-Ⅰ蛋白表达量降低,差异有统计学意义(P < 0.05)。
结论高糖对HK-2细胞产生损伤作用,可表现为细胞因子MCP-1、TGF-β1表达水平升高以及纤维化产物COL-Ⅰ表达增加。ALA/LA可通过下调MCP-1和TGF-β1的表达,降低COL-Ⅰ水平,起到保护糖损伤HK-2细胞的作用。
Abstract:ObjectiveTo study the effect and mechanism of monocyte chemotactic protein-1 (MCP-1)/transforming growth factor beta1(TGF-β1)/collagen-Ⅰ (COL-Ⅰ) pathways for human kidney 2 (HK-2) cells induced by high glucose.
MethodsMethyl Thiazolyl Tetrazolium (MTT) method was used to establish HK-2 cell model damaged by sugar. The protein expression levels of MCP-1, TGF-β1 and COL-Ⅰ in supernatant of HK-2 cells were determined by enzyme-linked immunosorbent assay (ELISA), and the expressions of MCP-1 , TGF-β1 and COL-ⅠmRNA in HK-2 cells were determined by reverse transcription-polymerase chain reaction (RT-PCR) after treatment with different concentrations of alpha linolenic acid (ALA)/linoleic acid (LA).
ResultsAfter 48 h intervention in HK-2 cells induced by glucose were treated with 50 μmol/L ALA and LA and 50 μmol/L mixture of ALA/LA with the ratio of 1 to 4, the expression levels of MCP-1mRNA and MCP-1 protein were significantly decreased (P < 0.05). After HK-2 cells induced by glucose and treated with 100 μmol/L ALA and LA for 48 h, TGF-β1mRNA and TGF-β1 protein expression were significantly decreased(P < 0.05). After HK-2 cells induced by glucose and treated with 100 μmol/L ALA, 50 μmol/L LA and 50 μmol/L mixture of ALA/LA with the ratio of 1 ∶ 4 for 48 h, the expression of COL-Ⅰ mRNA and COL-Ⅰ protein were significantly decreased (P < 0.05).
ConclusionHK-2 cells are damaged by high glucose, manifesting as increased expression of cytokines MCP-1 and TGF-β1, and increased expression of fibrosis product COL-Ⅰ. ALA/LA can down-regulate the expression of MCP-1 and TGF-β1, reduce the level of COL-Ⅰ, and protect HK-2 cells damaged by glucose.
-
-
图 2 ALA/LA对糖损伤HK-2细胞MCP-1表达的影响
N:正常对照组;G:高糖模型组;A1~A4:ALA干预组,干预物浓度分别为10、50、100、200 μmol/L; L1~L4:LA干预组,干预物浓度分别为10、50、100、200 μmol/L; E1~E4:EPA干预组,干预物浓度分别为10、50、100、200 μmol/L; M1~M3:ALA/LA混合干预组,干预物浓度为50 μmol/L, 混合比例分别为1∶1、1∶4、1∶8; M4~M6:ALA/LA混合干预组,干预物浓度为100 μmol/L, 混合比例分别为1∶1、1∶4、1∶8。
与正常对照组相比,*P <0.05;与高糖模型组相比, #P < 0.05图 3 ALA/LA对糖损伤HK-2细胞TGF-β1表达的影响
N:正常对照组; G:高糖模型组; A1~A4:ALA干预组,干预物浓度分别为10、50、100、200 μmol/L; L1~L4:LA干预组,干预物浓度分别为10、50、100、200 μmol/L; E1~E4:EPA干预组,干预物浓度分别为10、50、100、200 μmol/L; M1~M3:ALA/LA混合干预组,干预物浓度为50 μmol/L, 混合比例分别为1∶1, 1∶4、1∶8; M4~M6:ALA/LA混合干预组,干预物浓度为100 μmol/L, 混合比例分别为1∶1、1∶4、1∶8。
与正常对照组相比,*P <0.05;与高糖模型组相比, #P < 0.05。图 4 ALA/LA对糖损伤HK-2细胞COL-Ⅰ表达的影响
N:正常对照组; G:高糖模型组; A1~A4:ALA干预组,干预物浓度分别为10、50、100、200 μmol/L; L1~L4:LA干预组,干预物浓度分别为10、50、100、200 μmol/L; E1~E4:EPA干预组,干预物浓度分别为10、50、100、200 μmol/L; M1~M3:ALA/LA混合干预组,干预物浓度为50 μmol/L, 混合比例分别为1∶1, 1∶4、1∶8; M4~M6:ALA/LA混合干预组,干预物浓度为100 μmol/L, 混合比例分别为1∶1、1∶4、1∶8。
与正常对照组相比, *P < 0.05; 与高糖模型组相比, #P < 0.05。 -
[1] DRISS V, QUESNEL B, BRINSTER C. Monocyte chemoattractant protein 1 (MCP-1/CCL2) contributes to Thymus atrophy in acute myeloid leukemia[J]. Eur J Immunol, 2015, 45(2):396-406. doi: 10.1002/eji.201444736
[2] SULAIMAN W, NGUYEN D H. Transforming growth factor beta 1, a cytokine with regenerative functions[J]. Neural Regen Res, 2016, 11(10):1549-1552. doi: 10.4103/1673-5374.193223
[3] DOCHERTY N G, MURPHY M, MARTIN F, et al. Targeting cellular drivers and counter-regulators of hyperglycaemia- and transforming growth factor-β1-associated profibrotic responses in diabetic kidney disease[J]. Exp Physiol, 2014, 99(9):1154-1162. doi: 10.1113/expphysiol.2014.078774
[4] WU L, LI X Q, CHANG D Y, et al. Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease[J]. Nephrol Dial Transplant, 2020, 35(2):291-297.
[5] ZENI L, NORDEN A G W, CANCARINI G, et al. A more tubulocentric view of diabetic kidney disease[J]. J Nephrol, 2017, 30(6):701-717. doi: 10.1007/s40620-017-0423-9
[6] SHUI H, GAO P, SI X Y, et al. Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway[J]. Mol Biol Rep, 2010, 37(4):1749-1754. doi: 10.1007/s11033-009-9599-y
[7] JIANG M X, ZHANG H F, ZHAI L J, et al. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway[J]. Lipids Heal Dis, 2017, 16(1):216. doi: 10.1186/s12944-017-0611-6
[8] 姜明霞, 章海风, 叶变良, 等. 葡萄糖对HK-2细胞的糖毒性及ALA/LA的干预作用[J]. 营养学报, 2017, 39(1):41-44, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXX201701011.htm [9] COUSIN S P, HVGL S R, WREDE C E, et al. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1[J]. Endocrinology, 2001, 142(1):229-240. doi: 10.1210/endo.142.1.7863
[10] SURESH Y, DAS U N. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus:effect of ω-6 fatty acids[J]. Nutrition, 2003, 19(2):93-114. doi: 10.1016/S0899-9007(02)00856-0
[11] HALLER H, BERTRAM A, NADROWITZ F, et al. Monocyte chemoattractant protein-1 and the kidney[J]. Curr Opin Nephrol Hypertens, 2016, 25(1):42-49. doi: 10.1097/MNH.0000000000000186
[12] MORIYA T, TANAKA K, MORIYA R. Glomerular structural changes and structural-functional relationships at early stage of diabetic nephropathy in Japanese type 2 diabetic patients[J]. Med Electron Microsc, 2000, 33(3):115-122. doi: 10.1007/s007950000010
[13] 陈继业, 余雪松, 叶本兰. TGF-β1与糖尿病肾病[J]. 中国糖尿病杂志, 2002, 10(1):56-58. doi: 10.3321/j.issn:1006-6187.2002.01.015 [14] LEE S B, KALLURI R. Mechanistic connection between inflammation and fibrosis[J]. Kidney Int Suppl, 2010(119):S22-S26.
[15] SATIRAPOJ B, DISPAN R, RADINAHAMED P, et al. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease[J]. BMC Nephrol, 2018, 19(1):246. doi: 10.1186/s12882-018-1043-x
-
期刊类型引用(16)
1. 黄鹏. 胃镜下肾上腺素注射结合钛夹治疗溃疡性上消化道出血患者的疗效观察. 中国现代药物应用. 2023(03): 120-122 . 百度学术
2. 宋军峰,杨蕾,李岩. 内镜下金属夹止血联合大剂量奥美拉唑对上消化道出血患者血管活性因子及生长因子水平的影响. 临床医学研究与实践. 2023(12): 39-42 . 百度学术
3. 聂淼,赵建磊,高娜. 白及粉联合雷贝拉唑治疗溃疡性上消化道出血的临床效果及对凝血功能的影响. 中国当代医药. 2023(10): 89-92 . 百度学术
4. 苏娟,苏东星,郑捷,陆才金,刘程丽,梁秀丽,卢丽霞. 基于真实世界的内镜下金属钛夹联合艾普拉唑治疗非静脉曲张性上消化道出血的临床研究. 微创医学. 2023(03): 337-339+347 . 百度学术
5. 蒋蕾. 胃镜下注射肾上腺素与钛夹联合治疗急性非静脉曲张性上消化道出血的效果研究. 中国现代药物应用. 2023(14): 123-125 . 百度学术
6. 王晓倩,迟成,林淑春. 丙泊酚静脉麻醉在上消化道出血胃镜检查中的应用效果评价. 当代医学. 2022(07): 175-177 . 百度学术
7. 许阳院,曾小冬,梅婷. 内镜下钛夹与药物注射治疗急性非静脉曲张性上消化道出血患者的临床疗效比较. 当代医学. 2022(13): 108-110 . 百度学术
8. 程婷婷. 胃镜联合金属钛夹治疗溃疡性上消化道出血的疗效观察. 中国医疗器械信息. 2022(22): 125-127 . 百度学术
9. 王文泰,梁军超. 内镜下金属钛夹止血联合黏膜下注射肾上腺素治疗溃疡性上消化道出血的效果及对氧化应激指标的影响. 临床医学研究与实践. 2021(09): 75-77 . 百度学术
10. 赵爱玲. 奥曲肽辅助胃镜介入治疗消化性溃疡伴上消化道出血的疗效. 辽宁医学杂志. 2021(03): 72-74 . 百度学术
11. 马熙淼,綦鹏,刘敏,王爱平. 内镜下金属钛夹联合兰索拉唑治疗老年上消化道出血的疗效及对凝血功能的影响. 中国老年学杂志. 2021(15): 3193-3196 . 百度学术
12. 康利. 胃镜下注射去甲肾上腺素治疗溃疡性上消化道出血的效果观察. 现代医学与健康研究电子杂志. 2021(14): 59-61 . 百度学术
13. 颜红梅,李荣海. 胃镜下钛夹联合肾上腺素治疗急性上消化道出血50例临床分析. 岭南急诊医学杂志. 2021(04): 410-412 . 百度学术
14. 段福来. 乌司他丁联合内镜金属钛夹止血治疗对上消化道出血患者止血效果及炎症因子的影响. 基层医学论坛. 2021(26): 3752-3753 . 百度学术
15. 伍燕侠,李朋. 介入栓塞术治疗抗血小板药物致老年消化道溃疡大出血的单中心研究及患者预后影响因素Logistic回归方程分析. 世界华人消化杂志. 2021(18): 1077-1083 . 百度学术
16. 石道宏,余涛,赵平. 胃镜下钛夹联合组织胶、聚桂醇注射治疗肝硬化胃底静脉曲张的临床效果. 临床医学研究与实践. 2021(32): 56-59 . 百度学术
其他类型引用(1)