铁死亡的发生机制及其在纤维化疾病中作用的研究进展

段誉, 邰文琳

段誉, 邰文琳. 铁死亡的发生机制及其在纤维化疾病中作用的研究进展[J]. 实用临床医药杂志, 2022, 26(10): 139-143. DOI: 10.7619/jcmp.20214863
引用本文: 段誉, 邰文琳. 铁死亡的发生机制及其在纤维化疾病中作用的研究进展[J]. 实用临床医药杂志, 2022, 26(10): 139-143. DOI: 10.7619/jcmp.20214863
DUAN Yu, TAI Wenlin. Research progress on mechanism of ferroptosis and its role in fibrotic diseases[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 139-143. DOI: 10.7619/jcmp.20214863
Citation: DUAN Yu, TAI Wenlin. Research progress on mechanism of ferroptosis and its role in fibrotic diseases[J]. Journal of Clinical Medicine in Practice, 2022, 26(10): 139-143. DOI: 10.7619/jcmp.20214863

铁死亡的发生机制及其在纤维化疾病中作用的研究进展

基金项目: 

国家自然科学基金资助项目 81760383

国家自然科学基金资助项目 82060385

详细信息
    通讯作者:

    邰文琳, E-mail: TAIWenlin2685@163.com

  • 中图分类号: R521.6;Q255

Research progress on mechanism of ferroptosis and its role in fibrotic diseases

  • 摘要:

    铁死亡是一种重要的细胞死亡方式,主要由铁依赖性氧化损伤引起,受铁代谢和脂质过氧化信号调控。细胞内铁代谢失衡、氧化还原状态受到破坏会促进细胞铁死亡的发生。近年来,越来越多研究发现在肝纤维化及肺纤维化疾病的病理过程中,存在铁积累和脂质过氧化物堆积现象,表明铁死亡参与了纤维化疾病的发生发展。本文对铁死亡在肝纤维化和肺纤维化疾病中发挥的不同调控作用进行总结,综述了在不同纤维化疾病中针对铁死亡相关机制抑制纤维化进展的有效药物,提出了纤维化疾病中针对铁死亡机制的潜在治疗靶点,为临床治疗纤维化疾病的新型靶向药物研发指明了方向。

    Abstract:

    Ferroptosis is an important way of cell death, which is mainly caused by iron-dependent oxidative damage and regulated by iron metabolism and lipid peroxidation signals. Imbalance of iron metabolism and the destruction of redox state in cells will promote the occurrence of cell iron death. In recent years, more and more studies have found that iron accumulation and lipid peroxide accumulation exist in the pathological process of liver fibrosis and pulmonary fibrosis, indicating that iron death is involved in the occurrence and development of fibrosis. This study summarized the different regulatory roles of iron death in liver fibrosis and pulmonary fibrosis, reviewed the effective drugs that inhibit the progression of fibrosis according to the mechanisms related to iron death in different fibrosis diseases, and proposed the potential therapeutic targets for iron death mechanism in fibrosis diseases, which pointed out the direction for the research and development of new targeted drugs for the clinical treatment of fibrotic diseases.

  • [1]

    STOCKWELL B R, ANGELI J P F, BAYIR H, et al. Ferroptosis: aregulated cell death Nexuslinking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. doi: 10.1016/j.cell.2017.09.021

    [2]

    DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042

    [3]

    JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8

    [4]

    BERTRAND R L. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events[J]. Med Hypotheses, 2017, 101: 69-74. doi: 10.1016/j.mehy.2017.02.017

    [5]

    DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10(1): 9-17. doi: 10.1038/nchembio.1416

    [6]

    CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi: 10.1038/s41571-020-00462-0

    [7]

    WEILAND A, WANG Y M, WU W H, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880-4893. doi: 10.1007/s12035-018-1403-3

    [8]

    WANG W M, GREEN M, CHOI J E, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. doi: 10.1038/s41586-019-1170-y

    [9]

    LUEDDE T, KAPLOWITZ N, SCHWABE R F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance[J]. Gastroenterology, 2014, 147(4): 765-783, e4. doi: 10.1053/j.gastro.2014.07.018

    [10]

    MEHTA K J, FARNAUD S J, SHARP P A. Iron and liver fibrosis: Mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. doi: 10.3748/wjg.v25.i5.521

    [11]

    LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124. doi: 10.3390/ijms161125942

    [12]

    TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. doi: 10.1038/nrgastro.2017.38

    [13]

    YU Y Y, JIANG L, WANG H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739. doi: 10.1182/blood.2019002907

    [14]

    WANG L, ZHANG Z L, LI M M, et al. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation[J]. IUBMB Life, 2019, 71(1): 45-56. doi: 10.1002/iub.1895

    [15]

    LI Y J, JIN C, SHEN M, et al. Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway[J]. Free Radic Biol Med, 2020, 160: 845-859. doi: 10.1016/j.freeradbiomed.2020.09.008

    [16]

    KONG Z Y, LIU R, CHENG Y R. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2019, 109: 2043-2053. doi: 10.1016/j.biopha.2018.11.030

    [17]

    SUI M, JIANG X F, CHEN J, et al. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2018, 106: 125-133. doi: 10.1016/j.biopha.2018.06.060

    [18]

    ZHANG Z L, YAO Z, WANG L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103. doi: 10.1080/15548627.2018.1503146

    [19]

    ZHANG Z L, GUO M, LI Y J, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells[J]. Autophagy, 2020, 16(8): 1482-1505. doi: 10.1080/15548627.2019.1687985

    [20]

    GONG Y, WANG N, LIU N G, et al. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis[J]. DNA Cell Biol, 2019, 38(7): 725-733. doi: 10.1089/dna.2018.4541

    [21]

    FENG H Z, STOCKWELL B R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis[J]. PLoS Biol, 2018, 16(5): e2006203. doi: 10.1371/journal.pbio.2006203

    [22]

    CHENG H P, FENG D D, LI X H, et al. Iron deposition-induced ferroptosis in alveolar type Ⅱ cells promotes the development of pulmonary fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166204. doi: 10.1016/j.bbadis.2021.166204

    [23]

    BRIDGES R J, NATALE N R, PATEL S A. System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1): 20-34. doi: 10.1111/j.1476-5381.2011.01480.x

    [24]

    CAO J Y, DIXON S J. Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11/12): 2195-2209.

    [25]

    IMAI H, MATSUOKA M, KUMAGAI T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis[J]. Curr Top Microbiol Immunol, 2017, 403: 143-170.

    [26]

    RASHIDIPOUR N, KARAMI-MOHAJERI S, MANDEGARY A, et al. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies[J]. Toxicology, 2020, 433(434): 152407.

    [27]

    LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. doi: 10.1016/j.bbagen.2017.05.019

    [28]

    AYALA A, MUÑOZ M F, ARGVELLES S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014: 360438.

    [29]

    LIU T T, XU P L, KE S R, et al. Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway[J]. Arch Biochem Biophys, 2022, 715: 109087. doi: 10.1016/j.abb.2021.109087

    [30]

    LI X, ZHUANG X B, QIAO T K. Role of ferroptosis in the process of acute radiation-induced lung injury in mice[J]. Biochem Biophys Res Commun, 2019, 519(2): 240-245. doi: 10.1016/j.bbrc.2019.08.165

    [31]

    LI X, DUAN L J, YUAN S J, et al. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1[J]. J Inflamm (Lond), 2019, 16: 11. doi: 10.1186/s12950-019-0216-0

    [32]

    LIU T, YANG Q F, ZHENG H P, et al. Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury[J]. Biomaterials, 2021, 277: 121103. doi: 10.1016/j.biomaterials.2021.121103

    [33]

    XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. doi: 10.1038/cdd.2015.158

    [34]

    SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

计量
  • 文章访问数:  617
  • HTML全文浏览量:  396
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 网络出版日期:  2022-04-25

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    根据国家关于期刊质量管理的相关要求,为加强学术诚信体系建设,防范学术不端风险,《实用临床医药杂志》要求文章重复率不超过20%。即日起,请作者在向《实用临床医药杂志》投稿前先通过维普、万方等权威数据库进行论文查重检测。作者通过投审稿系统投稿时,需要提交稿件及本文重复率不超过20%的查重检测报告。

    鉴于作者在外部渠道查重易造成论文与成果泄漏,《实用临床医药杂志》官网联系了维普论文检测系统(链接地址:https://vpcs.fanyu.com/personal/jcmp)、万方检测系统(链接地址:http://jcmp.wfcheck.cn/),便于作者进行预查重检测。维普论文检测系统、万方检测系统为第三方检测,具体事宜请作者与检测方接洽(维普联系电话:400-607-5550;万方联系QQ:800856851;电话:18677087062)。

    同时,《实用临床医药杂志》编辑部提醒广大作者尽早关注“实用临床医药杂志”官方微信公众号,并登陆官方网站及投审稿系统进行投稿。

     


    《实用临床医药杂志》官方微信二维码

     

     

    《实用临床医药杂志》官方网站三维码