Effect of lidocaine on postoperative autonomic nerve function in patients undergoing laparoscopic surgery
-
摘要:目的 探讨静脉输注利多卡因对腹腔镜手术患者术后自主神经功能和恢复的影响。方法 将全身麻醉下腹腔镜妇科手术患者70例纳入本研究,随机分为利多卡因组(L组)和对照组(C组)。L组术前静脉推注利多卡因1.5 mg/kg, 术中以1.5 mg/(kg·h)维持, C组给予等量生理盐水。术前、术后第1天和术后第2天动态监测心电图,分析心率变异性(HRV)指标,包括低频功率标准化值(LFnu)、高频功率标准化值(HFnu)、总功率对数值(LogTP)、低频与高频功率比值(LF/HF)、全部窦性RR间期标准差(SDNN)及相邻RR间期差值均方根(RMSSD); 评估术后疼痛评分,检测血清白细胞介素-6(IL-6)浓度并采用恢复质量评定量表(QoR-40)对患者进行随访。结果 与C组比较, L组术后第1天LogTP、HFnu、SDNN、RMSSD均较高,而LFnu、LF/HF较低,疼痛评分也较低,差异均有统计学意义(P < 0.05); L组术后第2天的IL-6浓度低于C组, QoR-40评分高于C组,差异均有统计学意义(P < 0.05)。结论 利多卡因可稳定腹腔镜手术患者术后交感与副交感神经平衡,利于患者术后恢复。Abstract:Objective To investigate the effect of lidocaine on perioperative function of autonomic nervous system and recovery in patients undergoing gynecological surgery.Methods A total of 70 patients undergoing laparoscopic gynecological surgery under general anesthesia were randomly divided into lidocaine group (group L) and control group(group C). Group L received intravenous injection of 1.5 mg/kg lidocaine before operation and maintained at 1.5 mg/(kg·h) during operation, while group C received the same amount of normal saline. Electrocardiogram was monitored before operation, 1 day and 2 days after operation to analyze heart rate variability (HRV), including the normalized unit of low-frequency band power (LFnu), the normalized unit of high-frequency band power (HFnu), the log-transformed measure of total-frequency band power (LogTP), the ratio of low to high frequency band powers (LF/HF), the standard deviation of the inter-beat-interval of normal sinus beats (SDNN) and the root mean square of successive difference of successive intervals (RMSSD). Pain score was assessed, and plasma levels of interleukin-6 (IL-6) were determined and the quality of recovery-40 questionnaire (QoR-40) was used to evaluate the quality of recovery.Results Compared with group C, LogTP, HFnu, SDNN, and RMSSD were higher, LFnu and LF/HF were lower, and pain scores were lower in the group L on the first postoperative day (P < 0.05). The levels of plasma IL-6 on the second postoperative day in the group L were significantly lower, and QoR-40 scores were higher than those of the C group (P < 0.05).Conclusion Lidocaine can stabilize the balance of sympathetic and parasympathetic nerves after laparoscopic surgery, which is beneficial to postoperative recovery of patients.
-
Keywords:
- heart rate variability /
- lidocaine /
- sympathetic nerve /
- parasympathetic nerve /
- perioperation
-
高血压是常见的心血管类疾病,血压持续升高,病情累积可导致心腔增大、心壁肥厚、心壁供血不足等改变,多表现为胸部憋闷、隐痛不适、乏力、气短等症状,称为高血压性心脏病(HHD)[1-2], 临床早日发现并及时治疗有助于控制疾病发展,改善预后。HHD常用的诊断手段包括心电图、心动图、心脏B超、心血管磁共振等[3]。本研究采用心电图、超声心动图以及两者联合检查以观察HHD诊断的准确率,并比较3种检测方法的应用效果,现报告如下。
1. 资料与方法
1.1 一般资料
选取2019年1月—2020年12月收治的90例HHD患者为研究对象,患者病史、临床症状及实验室检查均符合HHD诊断标准。纳入标准: ①患者符合《2018欧洲心脏病学会和欧洲高血压学会高血压管理指南》[4]; ②接受检查患者签署了知情同意书。排除标准: ①临床资料不全者; ②合并有先天性心脏病、心肌病等心功能不全的患者。其中男49例,女41例; 年龄32~82岁,平均(55.3±6.7)岁; 高血压病程2~16年,平均(7.9±2.9)年; 原发性高血压65例,继发性高血压25例。高血压分级为Ⅰ级36例, Ⅱ级24例, Ⅲ级30例。
1.2 方法
90例患者均给予心电图及超声心动图检查。心电图检查: 给予常规24 h心电图监测,重点观察患者左心室肥厚及相关并发症情况。超声心动图: 设置超声仪(美国飞利浦公司型号, EPIQ 7C)的探头频率,在患者的左心室长轴切面的位置取样操作,形成超声诊断图,测量患者左心房和左心室内径、主动脉内径以及左心室壁的厚度; 选取患者心尖四腔切面位置,测量舒张期二尖瓣口血流频谱,检测A峰值与E峰值,计算二尖瓣瓣尖舒张早期充盈速度(E)与舒张晚期充盈速度(A)比值(E/A)值[5]。
1.3 评价标准
根据《临床心电图学第5版》中相关标准对HHD心电图进行诊断,诊断指标主要包括P波增宽且出现切迹, RV5+SV1>4.0 mV(男)、RV5+SV1>3.5 mV(女), R波占优势的导联中ST段可下移,或T波倒置,电轴左偏,心律失常等[2]。HHD超声心动图诊断指标为《临床心血管病学》中的相关标准[5], 主要观察E/A、左心室扩大、室间隔肥厚、左心室肥厚等指标。
1.4 统计学方法
数据采用SPSS 24.0统计学软件进行分析,计数资料采用卡方检验, P < 0.05为差异有统计学意义。
2. 结果
2.1 不同检查方法HHD检出率比较
联合检查诊断为左心室肥厚67例(74.4%), 室间隔肥厚44例(48.9%), 左心室增大29例(32.2%), 左心房增大26(28.9%), 高于心电图检出率,差异有统计学意义(P < 0.05); 联合检查对左心室肥厚、室间隔肥厚和心肌缺血的检出率高于超声心动图,差异有统计学意义(P < 0.05); 联合检查对心肌缺血检出率高于心电图检查,但差异无统计学意义(P>0.05), 见表 1。
表 1 不同检查方法检出率比较[n(%)]临床表现 心电图(n=90) 超声心动图(n=90) 联合检查(n=90) 室间隔肥厚 19(21.1)* 31(34.3)* 44(48.9) 左心室增大 7(7.8)* 24(26.7) 29(32.2) 左心室肥厚 36(40.0)* 53(58.9)* 67(74.4) 左心房增大 8(8.9)* 21(23.3) 26(28.9) 心肌缺血 27(30.0) 18(20.0)* 35(38.9) 与联合检查比较, *P < 0.05。 2.2 不同检查方法诊断准确率比较
联合检查诊断HHD的准确率高于心电图和超声心动图单独检查结果,差异有统计学意义(P < 0.05), 见表 2。
表 2 不同检查方法诊断准确率比较[n(%)]检查方式 n 确诊 漏诊 准确率/% 心电图 90 52(57.8) 38(42.2) 57.8* 超声心动图 90 61(67.8) 29(32.2) 67.8* 联合检查 90 87(96.7) 3(3.3) 96.7* 与联合检查比较, *P < 0.05。 3. 讨论
HHD是导致心血管疾病死亡的最常见原因,疾病后期可出现心慌、气促、劳力性呼吸困难、端坐呼吸、咳嗽、咳粉红色泡沫状痰等症状[6]。当HHD患者血压升高时,增大了左室充盈压力,左房负荷增加,较长时间的高负荷,将导致左房扩大,左心室心肌发生重构,表现为左室肥厚、左房增大、室间隔肥厚、左室舒张功能减低、心肌供血不足和心电改变异常等临床特征[7-8], 临床统计显示,高血压性心脏病患者发生心衰后,男、女5年病死率分别为76%、69%[9]。因此, HHD早期准确诊断和早日干预对改善预后和延长患者生存时间具有重要意义。
心电图和超声心动图是临床诊断HHD最常用的方式,具有经济、无创、安全等优点。心电图能及时准确地监测心肌电生理变化,血压长期升高、血管壁压力增大、血管壁弹性下降会导致冠脉血流异常、心脏负荷加重、心肌纤维增粗,进而引发室壁增厚,心电图表现为QRS波升高、T波改变和心律失常等。但是,HHD患者早期心室壁增厚不明显,QRS波改变不显著,还存在左、右心室肥厚时电位抵消等现象,导致心电图对HHD的漏诊和误诊率较高[10]。另外,心电图存有无法识别心肌肥厚类型等不足[11]。超声心动图可直观观察左心室壁厚度,区分心室肥厚类型,评估心室舒缩功能和血流动力学指标,测量心房、心室腔和大血管的内径等,提供了直观依据,有助于HHD的临床诊断和鉴别,但存在超声心动图图像通透性差、超声心动图数据的采集和报告存有个体化差异等缺点[12]。研究[13]表明,使用超声心动图与心电图对高血压心脏病的诊断起到优势互补作用,超声心动图不但能把所获得血流信号叠加在B超图像上,还能清楚地显示血管分布情况、管径大小、管壁的薄厚及搏动情况,并且能直观地显示血流方向、速度及有无异常血流,及时发现脏器病变等。
本研究表明,超声心动图对左心室肥厚、室间隔增厚、左心室扩大检出率高于心电图检查。心电图对心肌电生理的变化和心肌缺血征象能及时监测,联合检查能够发挥两者的长处,做到优势互补。本研究结果显示,联合检查对HHD诊断的准确率为96.67%, 高于超声心动图检查或心电图单一检查,与姜姝婧等[1]研究结果基本相符。联合诊断可以提高HHD诊断的准确率。联合检查利用了超声心动图在心室、心房、心壁增厚、室间隔增厚等方面观察更为全面的优点,同时能借助心电图在捕获心率、心律改变方面较为灵敏的优势,联合2种诊断有助于尽早诊断出HHD,做到及早治疗与预防,改善患者临床不良症状,并为后续临床上治疗该疾病提供有力的依据[14-15]。此外,联合诊断结果更全面、更准确,可降低漏诊率及误诊率。
综上所述,联合心电图和超声心动图对HHD的诊断准确率优于心电图或超声心动图单一检查,临床应联合2种检测方式,以提高HHD疾病诊断准确率,早日干预疾病,改善患者预后。
-
表 1 患者一般资料比较(x±s)
组别 n 年龄/岁 BMI/(kg/m2) ASA分级 手术时间/min 麻醉时间/min 气腹时间/min Ⅰ Ⅱ C组 28 50.25±5.80 24.13±2.66 19 9 68.93±10.14 80.57±10.18 60.96±10.52 L组 28 49.57±7.53 24.45±2.60 1 10 68.22±9.39 79.11±9.87 60.50±9.31 BMI: 体质量指数; ASA: 美国麻醉医师协会。 表 2 术中用药及苏醒质量比较(x±s)
组别 n 丙泊酚/mg 舒芬太尼/μg 瑞芬太尼/mg 顺式阿曲库铵/mg 苏醒时间/min 拔管时间/min Steward评分/分 C组 28 455.54±75.01 30.99±4.19 0.65±0.18 11.34±1.34 10.04±2.50 13.04±2.38 4.04±0.78 L组 28 355.18±69.87* 31.01±3.47 0.54±0.13* 10.93±1.75 10.14±2.43 12.64±2.79 4.11±0.77 与C组比较, *P < 0.05。 表 3 围术期HRV指标比较[M(Q1, Q3)]
指标 组别 n 术前 POD1 POD2 LogTP C组 28 6.11(5.76, 6.58) 5.79(5.24, 6.43) 5.71(4.60, 6.04)# L组 28 6.27(5.85, 6.52) 6.22(6.02, 6.81)* 5.61(5.28, 6.51)#△ HFnu C组 28 39.21(33.34, 49.02) 35.73(29.70, 40.46) 29.85(23.61, 44.37)# L组 28 40.06(29.92, 52.73) 47.53(33.76, 57.87)* 39.57(27.73, 49.57)#△ LFnu C组 28 60.73(50.92, 66.58) 64.15(59.46, 70.23) 70.09(55.50, 76.28)# L组 28 59.88(47.12, 70.03) 52.27(41.90, 65.26)*# 60.30(50.31, 72.07) LF/HF C组 28 1.55(1.04, 2.00) 1.80(1.47, 2.36) 2.35(1.26, 3.24)# L组 28 1.50(0.89, 2.34) 1.10(0.72, 1.88)*# 1.53(1.01, 2.60)△ SDNN/ms C组 28 22.90(18.25, 28.48) 19.95(15.68, 26.73) 18.75(10.50, 20.98)#△ L组 28 24.10(19.10, 28.00) 23.95(20.85, 30.43)* 18.90(14.70, 26.88)#△ RMSSD/ms C组 28 22.55(17.43, 29.43) 19.05(13.10, 26.35) 15.75(8.60, 21.90)# L组 28 22.95(16.83, 27.50) 22.90(19.23, 33.63)* 18.15(12.80, 27.45)*△ HRV: 心率变异性; LogTP: 总功率对数值; HFnu: 高频功率的标准化值; LFnu: 低频功率的标准化值;
LF/HF: 低频与高频功率比值; SDNN: 全部窦性RR间期的标准差; RMSSD: 相邻RR间期差值均方根;
POD1: 术后第1天; POD2: 术后第2天。与C组比较, *P < 0.05; 与术前比较, #P < 0.05; 与POD1时点比较, △P < 0.05。表 4 术后疼痛、IL-6及恢复情况比较(x±s)[M(Q1, Q3)]
指标 时点 C组(n=28) L组(n=28) 静息VAS评分/分 POD1 4.00(3.00, 5.00) 3.00(2.00, 4.00)* POD2 3.00(2.00, 3.00) 2.00(1.00, 3.00) 活动VAS评分/分 POD1 4.00(4.00, 5.00) 3.50(3.00, 4.75)* POD2 3.00(2.00, 4.00) 3.00(2.00, 3.00) 补救镇痛药量/mg 50.00(50.00, 68.75) 50.00(12.50, 50.00) IL-6血清浓度/(pg/mL) 术前 3.20±0.98 2.92±0.91 POD1 24.32±5.35# 18.31±5.12*# POD2 13.95±2.29#△ 9.98±1.84*#△ QoR-40评分/分 术前 191.68±4.06 192.00±3.08 POD1 172.57±5.57# 179.00±6.05*# POD2 185.00±4.88#△ 188.18±3.23*#△ 出院时间/d 9.5(8.0, 10.0) 9.0(8.0, 11.0) QoR-40: 恢复质量评定量表; VAS: 视觉模拟评分法; POD1: 术后第1天; POD2: 术后第2天。
与C组比较, *P < 0.05; 与术前比较, #P < 0.05; 与POD1时点比较, △P < 0.05。 -
[1] HAASE O, LANGELOTZ C, SCHARFENBERG M, et al. Reduction of heart rate variability after colorectal resections[J]. Langenbeck's Arch Surg, 2012, 397(5): 793-799. doi: 10.1007/s00423-012-0903-2
[2] RAIMONDI F, COLOMBO R, COSTANTINI E, et al. Effects of laparoscopic radical prostatectomy on intraoperative autonomic nervous system control of hemodynamics[J]. Minerva Anestesiologica, 2017, 83(12): 1265-1273.
[3] MAY S M, REYES A, MARTIR G, et al. Acquired loss of cardiac vagal activity is associated with myocardial injury in patients undergoing noncardiac surgery: prospective observational mechanistic cohort study[J]. Br J Anaesth, 2019, 123(6): 758-767. doi: 10.1016/j.bja.2019.08.003
[4] VAN BILSEN M, PATEL H C, BAUERSACHS J, et al. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2017, 19(11): 1361-1378. doi: 10.1002/ejhf.921
[5] UGUR B, YÜKSEL H, ODABASI A R, et al. Effects of intravenous lidocaine on QTd and HRV changes due to tracheal intubation during sevoflurane induction[J]. Int Heart J, 2006, 47(4): 597-606. doi: 10.1536/ihj.47.597
[6] LEE C H, SHIN H W, SHIN D G. Impact of oxidative stress on long-term heart rate variability: linear versus non-linear heart rate dynamics[J]. Heart Lung Circ, 2020, 29(8): 1164-1173. doi: 10.1016/j.hlc.2019.06.726
[7] ANDERSON T A. Heart rate variability: implications for perioperative anesthesia care[J]. Curr Opin Anaesthesiol, 2017, 30(6): 691-697. doi: 10.1097/ACO.0000000000000530
[8] LIU X, RABIN P L, YUAN Y, et al. Effects of anesthetic and sedative agents on sympathetic nerve activity[J]. Heart Rhythm, 2019, 16(12): 1875-1882. doi: 10.1016/j.hrthm.2019.06.017
[9] MAZZEO A T, LA MONACA E, DI LEO R, et al. Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care[J]. Acta Anaesthesiol Scand, 2011, 55(7): 797-811. doi: 10.1111/j.1399-6576.2011.02466.x
[10] MATANES E, WEISSMAN A, RIVLIN A, et al. Effects of pneumoperitoneum and the steep trendelenburg position on heart rate variability and cerebral oxygenation during robotic sacrocolpopexy[J]. J Minim Invasive Gynecol, 2018, 25(1): 70-75. doi: 10.1016/j.jmig.2017.07.009
[11] BEAUSSIER M, DELBOS A, MAURICE-SZAMBURSKI A, et al. Perioperative use of intravenous lidocaine[J]. Drugs, 2018, 78(12): 1229-1246. doi: 10.1007/s40265-018-0955-x
[12] KHAN A A, LIP G Y H, SHANTSILA A. Heart rate variability in atrial fibrillation: the balance between sympathetic and parasympathetic nervous system[J]. Eur J Clin Investig, 2019, 49(11): e13174.
[13] KASAEYAN NAEINI E, SUBRAMANIAN A, CALDERON M D, et al. Pain recognition with electrocardiographic features in postoperative patients: method validation study[J]. J Med Internet Res, 2021, 23(5): e25079. doi: 10.2196/25079
[14] SESAY M, ROBIN G, TAUZIN-FIN P, et al. Responses of heart rate variability to acute pain after minor spinal surgery: optimal thresholds and correlation with the numeric rating scale[J]. J Neurosurg Anesthesiol, 2015, 27(2): 148-154. doi: 10.1097/ANA.0000000000000102
[15] ANDERSON T A, SEGARAN J R, TODA C, et al. High-frequency heart rate variability index: a prospective, observational trial assessing utility as a marker for the balance between analgesia and nociception under general anesthesia[J]. Anesth Analg, 2020, 130(4): 1045-1053. doi: 10.1213/ANE.0000000000004180
[16] WEIBEL S, JOKINEN J, PACE N L, et al. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: a systematic review with trial sequential analysis[J]. Br J Anaesth, 2016, 116(6): 770-783. doi: 10.1093/bja/aew101
[17] WEIBEL S, JELTING Y, PACE N L, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults[J]. Cochrane Database Syst Rev, 2018, 6: CD009642.
[18] GROTE V, LEVNAJIC Z, PUFF H, et al. Dynamics of vagal activity due to surgery and subsequent rehabilitation[J]. Front Neurosci, 2019, 13: 1116. doi: 10.3389/fnins.2019.01116
[19] SUN X, WEI Z L, LI Y Y, et al. Renal denervation restrains the inflammatory response in myocardial ischemia-reperfusion injury[J]. Basic Res Cardiol, 2020, 115(2): 15. doi: 10.1007/s00395-020-0776-4
[20] FOO I, MACFARLANE A J R, SRIVASTAVA D, et al. The use of intravenous lidocaine for postoperative pain and recovery: international consensus statement on efficacy and safety[J]. Anaesthesia, 2021, 76(2): 238-250. doi: 10.1111/anae.15270
计量
- 文章访问数: 215
- HTML全文浏览量: 106
- PDF下载量: 16