Research progress of mechanism and application of exosomes in diabetic ulcer
-
-
-
[1] Marti-Carvajal A J, Gluud C, Nicola S, et al. Growth factors for treating diabetic foot ulcers[J]. Cochrane Database Syst Rev, 2015: 18013-18021.
[2] Du Y Z, Yu M, Ge J, et al. Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration[J]. Adv Funct Mater, 2015, 25(31): 5016-5029. doi: 10.1002/adfm.201501712
[3] Rani S, Ryan A E, Griffin M D, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Mol Ther, 2015, 23(5): 812-823. doi: 10.1038/mt.2015.44
[4] Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy[J]. Annu Rev Physiol, 2015, 77: 13-27. doi: 10.1146/annurev-physiol-021014-071641
[5] Zhang J Y, Guan J J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49-53. doi: 10.1186/s12967-015-0417-0
[6] Zhang B, Wang M, Gong A H, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing[J]. Stem Cells, 2015, 33(7): 2158-2168. doi: 10.1002/stem.1771
[7] Pan B T, Johnstone R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. doi: 10.1016/0092-8674(83)90040-5
[8] Borges F T, Melo S A, Ozdemir B C, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis[J]. J Am Soc Nephrol, 2013, 24(3): 385-392. doi: 10.1681/ASN.2012101031
[9] Mathiyalagan P, Liang Y X, Kim D, et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb[J]. Circ Res, 2017, 120(9): 1466-1476. doi: 10.1161/CIRCRESAHA.116.310557
[10] Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. doi: 10.1016/j.cell.2016.01.043
[11] Skokos D, Botros H G, Demeure C, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo[J]. J Immunol, 2003, 170(6): 3037-3045. doi: 10.4049/jimmunol.170.6.3037
[12] Flaherty S E 3rd, Grijalva A, Xu X Y, et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes[J]. Science, 2019, 363(6430): 989-993. doi: 10.1126/science.aaw2586
[13] Andre F, Schartz N E, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes[J]. Lancet, 2002, 360(9329): 295-305. doi: 10.1016/S0140-6736(02)09552-1
[14] Xiao Y W, Zheng L, Zou X F, et al. Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy[J]. J Extracell Vesicles, 2019, 8(1): 1625677. doi: 10.1080/20013078.2019.1625677
[15] Corrado C, Raimondo S, Chiesi A, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications[J]. Int J Mol Sci, 2013, 14(3): 5338-5366. doi: 10.3390/ijms14035338
[16] Zhang X, Yuan X, Shi H, et al. Exosomes in cancer: small particle, big player[J]. J Hematol Oncol, 2015, 8: 83-86. doi: 10.1186/s13045-015-0181-x
[17] Kim M S, Haney M J, Zhao Y L, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomed-Nanotechnol Biol Med, 2016, 12(3): 655-664. doi: 10.1016/j.nano.2015.10.012
[18] Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. doi: 10.1080/20013078.2018.1535750
[19] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes[J]. Proc Natl Acad Sci USA, 2016, 113(8): E968-E977. doi: 10.1073/pnas.1521230113
[20] Jeppesen D K, Fenix A M, Franklin J L, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445. doi: 10.1016/j.cell.2019.02.029
[21] Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5: 32945. doi: 10.3402/jev.v5.32945
[22] Mateescu B, Kowal E J, van Balkom B W, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper[J]. J Extracell Vesicles, 2017, 6(1): 1286095. doi: 10.1080/20013078.2017.1286095
[23] Karimi N, Cvjetkovic A, Jang S C, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins[J]. Cell Mol Life Sci, 2018, 75(15): 2873-2886. doi: 10.1007/s00018-018-2773-4
[24] Carrasco-Ramírez P, Greening D W, Andres G, et al. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation[J]. Oncotarget, 2016, 7(13): 16070-16089. doi: 10.18632/oncotarget.7445
[25] Hong C S, Funk S, Muller L, et al. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer[J]. J Extracell Vesicles, 2016, 5: 29289. doi: 10.3402/jev.v5.29289
[26] Shen W, Guo K Z, Adkins G B, et al. A single extracellular vesicle (EV) flow cytometry approach to reveal EV heterogeneity[J]. Angew Chem Int Ed Engl, 2018, 57(48): 15675-15680. doi: 10.1002/anie.201806901
[27] Gurtner G C, Sabine W, Yann B, et al. Wound repair and regeneration[J]. Wound Repair & Regeneration, 2010, 11(6): 5A-8A.
[28] Pop M A, Almquist B D. Biomaterials: A potential pathway to healing chronic wounds?[J]. Exp Dermatol, 2017, 26(9): 760-763. doi: 10.1111/exd.13290
[29] Dittmer J, Leyh B. Paracrine effects of stem cells in wound healing and cancer progression (Review)[J]. Int J Oncol, 2014, 44(6): 1789-1798. doi: 10.3892/ijo.2014.2385
[30] Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes[J]. IUBMB Life, 2018, 70(11): 1122-1132. doi: 10.1002/iub.1920
[31] Tao S C, Guo S C, Li M, et al. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model[J]. Stem Cells Transl Med, 2017, 6(3): 736-747. doi: 10.5966/sctm.2016-0275
[32] Guo S C, Tao S C, Yin W J, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model[J]. Theranostics, 2017, 7(1): 81-96. doi: 10.7150/thno.16803
[33] Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647. doi: 10.1089/scd.2014.0316
[34] Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice[J]. Biochem Biophys Res Commun, 2015, 467(2): 303-309. doi: 10.1016/j.bbrc.2015.09.166
[35] Zhao F J, Lei B, Li X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes[J]. Biomaterials, 2018, 178: 36-47. doi: 10.1016/j.biomaterials.2018.06.004
[36] Dalirfardouei R, Jamialahmadi K, Jafarian A H, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568. doi: 10.1002/term.2799
[37] Chen C Y, Rao S S, Ren L, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis[J]. Theranostics, 2018, 8(6): 1607-1623. doi: 10.7150/thno.22958
[38] Li X C, Chen C Y, Wei L M, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function[J]. Cytotherapy, 2016, 18(2): 253-262. doi: 10.1016/j.jcyt.2015.11.009
[39] Li X C, Jiang C Y, Zhao J G. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function[J]. J Diabetes Complicat, 2016, 30(6): 986-992. doi: 10.1016/j.jdiacomp.2016.05.009
[40] Zhang J Y, Chen C Y, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487. doi: 10.7150/ijbs.15514
[41] Li X, Xie X Y, Lian W S, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med, 2018, 50(4): 29-34.
[42] Li X, Liu L Y, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8: 72-82. doi: 10.1016/j.ebiom.2016.04.030
[43] Ti D D, Hao H J, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308-314. doi: 10.1186/s12967-015-0642-6
[44] Jia L, Chopp M, Wang L, et al. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy[J]. The FASEB Journal, 2018, 32(12): 6911-6922. doi: 10.1096/fj.201800597R
[45] Zhang Z G, Chopp M. Exosomes in stroke pathogenesis and therapy[J]. J Clin Investig, 2016, 126(4): 1190-1197. doi: 10.1172/JCI81133
[46] Wang C G, Wang M, Xu T Z, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1): 65-76. doi: 10.7150/thno.29766
[47] Xu N, Wang L, Guan J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model[J]. International Journal of Biological Macromolecules, 2018, 117: 102-107. doi: 10.1016/j.ijbiomac.2018.05.066
[48] Shi Q, Qian Z, Liu D, et al. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model[J]. Frontiers in Physiology, 2017, 8: 1341-1349. doi: 10.3389/fpls.2017.01341
-
期刊类型引用(7)
1. 梁铭标,梁会营,李丹,林晓兰,余学清. 智慧医养康服务一体化应用新模式构建与研究. 中国卫生信息管理杂志. 2024(01): 25-31 . 百度学术
2. 张静,贾建磊,李婷. 互联网+医养结合下心理干预模式的可行性及效果. 河北医药. 2024(02): 270-272 . 百度学术
3. 曹晓晓,于平平,王萍. 应对老龄化国家背景下我国“互联网+护理服务”存在的问题及其解决路径. 医学与法学. 2024(02): 86-90 . 百度学术
4. 蒋艳双,解红文,袁菲,杨昭霞,杨鸿雁. 脑卒中偏瘫患者“互联网+”H2H康复模式探讨. 实用临床医药杂志. 2023(03): 112-116 . 本站查看
5. 董雪凡,马静宜,耿怡丹,洪查理,姜彩菱,田建丽. 我国“互联网+医养结合”养老模式实施的研究进展. 职业与健康. 2023(15): 2154-2157 . 百度学术
6. 张洪,刘琴. 医养结合背景下“互联网+护理服务”中的法律风险及其规制. 医学与法学. 2023(04): 96-100 . 百度学术
7. 陈莹莹,陈国连,赵翠松,张小芳,叶将霞,王昕云,赵志莹,姚静. 网约护士的现状与研究进展. 全科护理. 2023(36): 5069-5072 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 141
- HTML全文浏览量: 58
- PDF下载量: 9
- 被引次数: 7